基于平均自相关和优化VMD的轴箱轴承故障诊断
作者:
作者单位:

1.西南交通大学机械工程学院 成都,610031;2.轨道交通运维技术与装备四川省重点实验室 成都,610031

作者简介:

通讯作者:

中图分类号:

TH133.33

基金项目:

国家自然科学基金资助项目(51975487);四川省自然科学基金资助项目(2022NSFSC0395)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对动车组运行过程中轴箱轴承振动加速度信号非平稳特性以及较大的背景噪声导致故障特征难以提取的问题,提出一种平均自相关结合参数优化变分模态分解(variational mode decomposition,简称VMD)的轴箱轴承故障诊断方法。首先,利用平均自相关对原始信号进行降噪,增强故障周期性冲击信息;其次,以故障特征频率能量比相反数为适应度函数,利用哈里斯鹰优化算法(Harris hawks optimization,简称HHO)优化VMD的模态分量数和二次惩罚系数,实现对降噪信号的自适应分解并提取出最佳模态分量;最后,计算其平方包络谱进行故障诊断分析。仿真和试验结果表明:该方法能够有效地降低背景噪声的影响,稳定地提取出周期性故障冲击成分,实现轴箱轴承故障的准确诊断。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-21
  • 最后修改日期:2021-01-31
  • 录用日期:
  • 在线发布日期: 2023-06-27
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司