摘要:针对滚动轴承振动信号中常包含有谐波、高斯白噪声和非周期性瞬态冲击成分,导致故障特征提取困难的问题,提出一种基于自适应的变分模态分解(adaptive variational mode decomposition,简称AVMD)和二阶频率加权能量算子(second-order frequency weighted energy operator, 简称SFWEO)的滚动轴承故障诊断方法。首先,根据不同的信号自适应地确定模式数和惩罚因子,利用参数优化的变分模态分解(variational mode decomposition,简称VMD)对原始信号进行分解,得到多个本征模式函数(instrinsic mode function,简称IMF);其次,计算每个IMF的时频加权峭度,根据时频加权峭度最大化准则选择最佳IMF;最后,采用二阶频率加权能量算子对最佳IMF进行解调。仿真和试验结果表明,所提方法克服了传统VMD算法分解精度受参数影响较大导致信号出现过分解或欠分解的问题,同时二阶频率加权能量算子对信号中的干扰成分具有很好的抑制作用,有效提高了诊断正确率。