基于进化算法优化GAN的轴承故障诊断
作者:
作者单位:

1.江南大学江苏省食品先进制造装备技术重点实验室 无锡, 214122;2.江苏省特种设备安全监督检验研究院无锡分院 无锡, 214071

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家自然科学基金资助项目(51775243,51705203,11902124);江苏省重点研发计划资助项目(BE201702);泰山产业领军人才工程资助项目


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承故障诊断故障样本类别不平衡的问题,提出一种基于进化算法优化的条件生成对抗网络(evolutionary conditional generative adversarial nets, 简称ECGAN)故障诊断方法。首先,利用进化算法优化条件生成对抗网络中的生成器,使其在不同的损失函数下生成与原始样本分布相似的新样本,扩充数据集;其次,将生成的样本和原始样本输入判别器,提取出样本中有效的数据特征,判断输入样本的真假和类别;最后,通过对抗学习机制优化生成器和判别器,提高网络的故障识别能力。实验结果表明,在轴承故障样本数据类别不平衡的情况下,ECGAN模型具有较好的故障诊断性能。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-09
  • 最后修改日期:2021-02-03
  • 录用日期:
  • 在线发布日期: 2023-06-27
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司