基于迭代修正DFT的车轮多边形磨耗状态识别
作者:
作者单位:

作者简介:

王秋实,男,1991年8月生,博士生。主要研究方向为车辆随机振动与疲劳。曾发表《Fatigue life assessment method of bogie frame with time-domain extrapolation for dynamic stress based on extreme value theory》(《Mechanical Systems and Signal Processing》 2021,Vol.159,No.107829)等论文。

通讯作者:

周劲松,男,1969年12月生,教授。主要研究方向为机车车辆动力学与控制。E-mail:jinsong.zhou@tongji.edu.cn

中图分类号:

TH113.1;U270.1+2

基金项目:

国家自然科学基金资助项目(51805373);国家留学基金资助项目(202106260138)


Detection Framework of Wheel Polygon Wear State Based on Iterative Modified DFT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    受车辆变速运行、轨道随机不平顺等因素的影响,轨道车辆的运行过程为典型的非平稳过程。由于传统方法对于非平稳信号的处理不理想,使得车轮多边形磨耗阶次与幅值的准确识别比较困难。为提高车轮多边形磨耗状态的识别准确度,提出了一种基于迭代修正离散傅里叶变换(discrete Fourier transform,简称DFT)的动态识别方法,采用车辆处于相对稳定速度运行时产生的轴箱垂向振动加速度信号进行分析。首先,通过设定适当的平稳性检验条件,从样本信号中抽取出部分相对平稳的短时信号;其次,对所抽取的短时信号进行频域分析与迭代计算,获得各阶车轮多边形的振动频率与振动周期;然后,根据振动周期的长度对所抽取的短时信号进行二次截断,获得代表各阶车轮多变形振动周期整数倍长度的新短时信号;最后,结合车轮多边形的几何特征与动态特性,对抽取的新短时信号再次进行频域分析与磨耗参数(阶次、幅值)计算,进而实现对车轮多边形磨耗状态的准确识别。分析表明,该识别方法有效减少了传统分析方法中因栅栏效应和频谱泄漏等固有缺陷导致的识别误差,可消除大部分非平稳因素的干扰,为轨道车辆的安全运行维护提供理论支持和方法参考。

    Abstract:

    Affected by the variable speed operation of vehicles, random irregularity of tracks and other factors, the operation process of rail vehicles is a typical non-stationary process. It is difficult to accurately identify the wheel polygon wear order and amplitude, because the traditional methods are not ideal for non-stationary processing signals. A dynamic detection framework based on iterative modified discrete Fourier transform (DFT) is proposed to improve the detection accuracy of wheel polygon wear state. The vertical vibration acceleration signal of axle box is used for analysis, when the vehicle is running at a relatively stable speed. Firstly, relatively stationary short-time signals are extracted from the sample signals by setting appropriate stability test conditions. Secondly, the frequency domain analysis and iterative calculation of the extracted short-time signal are carried out to obtain each order wheel polygon's vibration frequency and period. Then, according to the length of the vibration period, the extracted short-time signal is truncated twice to obtain a new short-time signal representing an integer multiple of the wheel polygon's vibration period. Finally, combined with the geometric and dynamic characteristics of the wheel polygon, the frequency domain analysis and wear parameters (order and amplitude) of the extracted new short-time signal are calculated again to realize the accurate identification of the wear state of the wheel polygon. The verification analysis shows that the identification framework effectively reduces the identification error caused by inherent defects such as the fence effect and spectrum leakage in traditional analysis methods, eliminating the interference of most non-stationary factors and provide theoretical support and method reference for rail vehicles' safe operation and maintenance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-18
  • 最后修改日期:2022-06-19
  • 录用日期:
  • 在线发布日期: 2023-06-29
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司