基于模糊聚类和CNN-BIGRU的轨道电路故障预测
作者:
作者单位:

作者简介:

林俊亭,男,1978年8月生,博士、教授。主要研究方向为高速铁路列车运行控制系统故障诊断、列车安全间隔控制。曾发表《基于定性微分对策的列车碰撞防护方法》(《铁道学报》2021年第43卷第5期)等论文。 E-mail:linjt@lzjtu.edu.cn

通讯作者:

中图分类号:

U284.2

基金项目:

中国铁道科学研究院科研基金资助项目(2021YJ205)


Fault Prediction Method of Track Circuit Based on Fuzzy Clustering and CNN‑BIGRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轨道电路稳态环境下故障诊断时效性不足的问题,提出一种基于Gath-Geva (GG)模糊聚类对轨道电路退化状态进行划分,并利用卷积神经网络(convolutional neural network, 简称CNN)和双向门控循环单元(bi-directional gated recurrent unit, 简称BIGRU)进行轨道电路故障预测的方法。首先,通过集中监测设备获取ZPW-2000轨道电路各类故障发生前一定时间内的正常工作数据;其次,通过核主成分分析进行特征降维和GG模糊聚类对轨道电路性能退化状态进行阶段划分,识别不同的退化状态;最后,利用CNN-BIGRU混合神经网络挖掘轨道电路不同故障类型数据特征,对轨道电路退化状态所对应的故障类型进行预测。实验结果表明,该算法可以精确划分轨道电路退化状态并实现故障预测,CNN-BIGRU预测模型分类精确度可达97.62%,运行时间仅为13.18 s,能够为轨道电路的多模式健康状态识别提供一种有效的方法。

    Abstract:

    Aiming at the problem of insufficient timeliness of fault diagnosis of track circuit in steady-state environment, a method based on Gath-Geva (GG ) fuzzy clustering to divide the degraded state of track circuit is proposed, and the fault prediction of track circuit is carried out by using convolutional neural network (CNN) and bi-directional gated recurrent unit (BIGRU). Firstly, through the centralized monitoring equipment, the normal working data of each fault type of ZPW-2000 track circuit within a certain time before the fault occurs are obtained. Then, the performance degradation states of track circuit are divided into stages by feature reduction and GG fuzzy clustering based on kernel principal component analysis, and different degradation states are identified. Finally, CNN-BIGRU hybrid neural network is used to mine the data characteristics of different fault types of track circuit, predicting the fault types corresponding to the degraded state of track circuit. Experimental results show that the algorithm can accurately divide the degraded state of track circuit and realize its fault prediction. The classification accuracy of CNN-BIGRU prediction model can reach 97.62% and the running time is only 13.18 s. It can provide an effective method for multi-mode health state recognition of track circuit.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-10
  • 最后修改日期:2022-06-20
  • 录用日期:
  • 在线发布日期: 2023-06-29
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司