基于FA-LN-BiGRU的机械设备剩余寿命区间预测方法
作者:
作者单位:

作者简介:

梁伟阁,男,1985年4月生,博士、硕士生导师。主要研究方向为机械装备可靠性、测试性与剩余寿命预测。

通讯作者:

中图分类号:

TH17

基金项目:

国家自然科学基金资助项目(61640308);湖北省自然科学基金资助项目(2019CFB362)


Remaining Useful Life Interval Prediction of Mechanical Equipment Based on FA‑LN‑BiGRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对数据驱动融合模型存在前后模型不匹配、关键信息丢失等问题,提出了一种端对端的预测方法,即基于特征注意力机制的对数正态分布和双向门控循环单元融合(feature attention-lognorm-bidirectional gated recurrent unit, 简称FA-LN-BiGRU)的剩余寿命区间预测方法。首先,利用特征注意力机制从多维度、非线性和大规模的传感器信号中提取出关键特征向量;其次,采用BiGRU网络从前向和后向2个方向对注意力加权特征的时变特性进行建模学习,并通过最大似然估计损失函数来训练网络参数,获得网络隐含状态输出向量的概率分布;最后,计算出基于对数正态分布的概率密度函数,实现设备剩余寿命(remaining useful life,简称RUL)不确定性的衡量。分析结果表明,对于运行条件复杂和故障模式多变的多维监测数据,所提方法能够深入挖掘性能退化信息,有效提高机械设备剩余寿命点预测和区间预测的准确度和可靠性。

    Abstract:

    Prediction models based on deep learning methods is difficult to measure the uncertainty of the remaining life of mechanical equipment. In particular, statistical data-driven predictive models are difficult to describe the coupling relationship between multi-dimensional sensor data. And the data-driven fusion model has the problem of loss of key information. To solve these problems, an end-to-end remaining useful lifetime interval prediction method is proposed based on feature attention-lognorm-bidirectional gated recurrent unit (FA-LN-BiGRU). First, the feature attention mechanism is used to extract key feature vectors from multi-dimensional, nonlinear and large-scale sensor signals. Then, the BiGRU network is used to model the time-varying characteristics of the attention-weighted features from both forward and backward directions. And the network parameters are trained through the maximum likelihood estimation loss function to obtain the probability distribution of the network hidden state output vector. Thus, the probability density function based on log-normal distribution is calculated to realize the measurement of equipment remaining useful life (RUL) uncertainty. The analysis results show that the proposed method can deeply mine performance degradation information for multi-dimensional monitoring data with complex operating conditions and variable failure modes. The accuracy and reliability of the remaining life point prediction and interval prediction of mechanical equipment are effectively improved.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-19
  • 最后修改日期:2022-06-24
  • 录用日期:
  • 在线发布日期: 2023-06-29
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司