基于注意力机制改进的SAB异步电机故障诊断
作者:
作者单位:

作者简介:

令波,男,1986年9月生,高级工程师。主要研究方向为六性设计与健康管理。曾发表《面內裂纹扩展问题的虚拟裂纹闭合法和离散内聚力模型》(《固体力学学报》2011年第32卷第supp1期)等论文。 E-mail: 523067894@qq.com

通讯作者:

中图分类号:

TM343;TP206;TP212

基金项目:


Motor Fault Diagnosis Based on Improved SAB with Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于电机结构及其运行环境复杂,导致各类故障与故障特征存在较强的非线性关系,单一信号信息含量有限,无法满足诊断需求。针对此问题,以电流、磁场信号为监测信号,提出基于注意力机制改进的支持向量机-自适应提升算法(SVM-AdaBoost,简称SAB)的故障诊断方法。首先,通过希尔伯特变换和快速傅里叶变换提取信号频域特征;其次,通过SAB分类器,对多源样本分别进行训练,获取各子分类器预测结果;最后,基于注意力机制调整权重矩阵参数,对电流、电磁信号进行信息融合,改进SAB分类器以提高故障诊断的准确率。研究结果表明:不同信号对各类故障的敏感程度不同;所提方法可以实现对转子断条故障、定子短路故障、轴承故障的诊断分类,与传统方法对比,该方法明显提高了故障诊断的鲁棒性和准确性。

    Abstract:

    Due to the complex motor structure and its operating environment, there is a strong nonlinear relationship between different faults and their fault features, the motor diagnosis driven by the single signal cannot satisfy the requirements. Considering this dilemma, a motor fault diagnosis method driven by multi-sensor information based on attention mechanism and SVM-AdaBoost (SAB) is proposed in this study. First, the corresponding frequency features of current and magnet signals are extracted by Hilbert transform and Fourier transform. Then, the SAB classifier is utilized to train multi-source signals and obtain sub-classifier results respectively. Finally, based on attention machanism, an attention weight matrix is adjusted to fuse the information and calculate the final diagnosis results. The proposed method is verified by realizing the diagnosis of broken rotor bar fault, stator short circuit fault and bearing fault. The proposed method reveals that the sensitivity of different signals to various faults is different. Compared with the traditional methods, the proposed method examine its superiority in terms of the robustness, generalization ability and fault diagnosis accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-30
  • 最后修改日期:2020-12-19
  • 录用日期:
  • 在线发布日期: 2023-06-29
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司