基于参数化功率谱估计的车轮多边形动态识别
作者:
作者单位:

作者简介:

通讯作者:

周劲松,男,1969年12月生,博士、教授。主要研究方向为机车车辆动力学与控制。E-mail:jinsong.zhou@tongji.edu.cn

中图分类号:

TH113.1;U270.1+2

基金项目:

国家自然科学基金资助项目(51805373);国家留学基金资助项目(202106260138)


Dynamic Detection Method of Wheel Polygon Wear Based on Parametric Power Spectrum Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于传统频谱估计方法存在固有缺陷,对车轮多边形振动频率的识别容易产生较大误差,尤其对于初期车轮多边形的识别更是困难。为解决上述问题,基于参数化功率谱估计理论,提出一种车轮多边形动态识别方法。首先,根据车轮多边形的动态特性,建立了谐波频率恢复模型;其次,基于奇异值分解法与归一化误差分析对谐波恢复模型的阶数进行确定;然后,采用总体最小二乘法对谐波恢复模型的参数进行计算;最后,根据Cadzow估计理论对异常磨耗信号进行功率谱估计,并以某地铁车辆的轴箱垂向振动加速度实测信号为例,对该方法的可行性与正确性进行了验证。结果表明:该方法可基于短时序列数据实现高精度频域估计,且对谐波信号敏感,尤其适用于早期车轮多边形异常磨耗信号的识别。

    Abstract:

    Due to the inherent defects of traditional spectrum estimation methods, it is difficult to accurately identify the abnormal wear signal of the wheel, especially for the identification of the initial wheel polygonal wear. To solve the above problem, a dynamic detection method of wheel polygon is proposed based on parametric power spectrum estimation. Firstly, the harmonic frequency recovery model is established according to the dynamic characteristics of the wheel polygon. Secondly, the order of the harmonic recovery model is determined in terms of the singular value decomposition method and normalized error analysis. Thirdly, the total least square method is used to calculate the parameters of the harmonic recovery model. Finally, the power spectrum of the abnormal wear signal is estimated according to Cadzow's estimation theory. Taking the measured signal of axle box vertical vibration acceleration of a subway vehicle as an analysis case, the feasibility and correctness of this method are verified. The results show that this method can realize high-precision frequency-domain estimation based on short-time sequence data, which is sensitive to harmonic signals, especially suitable for identifying initial wheel polygon abnormal wear.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-27
  • 最后修改日期:2022-08-10
  • 录用日期:
  • 在线发布日期: 2023-08-02
  • 出版日期: 2023-08-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司