升船机同步轴系统监测及扭矩预测方法研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133.2;TV691;TP206+.3

基金项目:


Synchronous Shaft System Monitoring and Torque Prediction Method of Ship Lift
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对升船机同步轴运动过程中的扭矩监测及变化趋势预测问题,提出了一种基于应变传感器的非接触式测量方法,实现了升船机同步轴扭矩的实时在线监测。在此基础上,基于历史监测数据,采用变分模态分解(variational mode decomposition,简称VMD)算法提取扭矩信号直流分量,降低扭矩预测计算量,使扭矩预测模型更适用于实际工作环境。针对同步轴运动过程起始点无法辨别、监测数据时序不一致性的问题,提出一种基于模糊熵的同步轴运动起始点检测方法。利用长短时记忆(long short-term memory,简称LSTM)神经网络算法建立了升船机同步轴扭矩预测模型,并利用历史监测数据对预测模型进行验证。结果表明:利用模糊熵对起始点进行检测可以改善各个样本间在时序上的差异性,从而提升扭矩预测精度;在所有扭矩测点处,预测精度相较于基础的阈值判断预测方法可至少提升27.5%;在机械结构和工况最复杂的同步轴系统齿轮箱连接处,扭矩预测的精度最少提升42.9%。该预测模型可真实准确预测同步轴扭矩变化,具有较好的工程应用价值。

    Abstract:

    Aiming at the issues of torque value monitoring and variation trend prediction in the process of ship lift synchronous shaft movement, a non-contact measuring method based on strain sensor is designed for achieving synchronous shaft torque real-time and on-line monitoring. Then on the basis of historical monitoring data, the direct-current component of torque signal with variational mode decomposition algorithm is extracted, in order to reduce the amount of torque prediction calculation and make the torque prediction model more suitable for practical working condition. Aiming at the issue of indistinguishable starting point and inconsistent monitoring timing sequence of the synchronous shaft movement process, related fuzzy entropy detection method is proposed. Moreover, by adopting long short-term memory (LSTM) algorithm, the prediction model of synchronous shaft torque is established. Furthermore, the prediction model is verified by comparing with real historical monitoring data. The result shows that using fuzzy entropy to detect the starting point can ameliorate the temporal difference of each sample, and then the accuracy of the prediction model is improved effectively. For all torque monitoring points, the prediction accuracy can be improved by at least 27.5% compared with the foundational threshold judgment prediction method. And at the gearbox connection places, which are the most complex mechanical structure and working conditions of synchronous shaft system, the accuracy of torque prediction is improved by at least 42.9%. So the prediction model can truly predict the variation of synchronous shaft torque. The whole research has a good engineering application value.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-04
  • 最后修改日期:2021-08-30
  • 录用日期:
  • 在线发布日期: 2023-08-02
  • 出版日期: 2023-08-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司