小样本条件下轴承故障的DCGAN诊断方法
作者:
作者单位:

作者简介:

通讯作者:

蔡浩原,男,1977年4月生,博士、副研究员。主要研究方向为MEMS传感器及其微系统、无线工业物联网传感器及移动机器人室内导航。 E-mail: hycai@mail.ie.ac.cn

中图分类号:

TH17;TH165.3;TP277

基金项目:

国家自然科学基金资助项目(61774157, 81771388);北京市自然科学基金资助项目(4182075)


Research on Deep Convolutional Generative Adversarial Networks Diagnosis Method of Bearing Fault Under Small Sample Condition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于故障数据图像的诊断方法所需训练数据严重不足以及在小样本故障库条件下诊断准确率较低等问题,提出了一种基于深度卷积生成对抗网络(deep convolutional generative adversarial networks, 简称DCGAN)的扩充滚动轴承故障小样本库的方法,以丰富故障信息,在小样本故障库条件下提高故障诊断准确率。为了改善传统算法易产生的棋盘格效应,设计上采样卷积(up-sampling convolution, 简称USCONV)层,将传统DCGAN算法与双线性插值的上采样及卷积相结合,对故障数据小波变换图像进行训练学习,输出逼真的生成样本。该模型针对多种故障情况,在小样本故障库条件下能准确完善数据集,缓解过拟合等问题,提高了再诊断的准确性。实验结果表明,USCONV层对棋盘格问题有明显改善,小样本库扩充后诊断模型对包含多种故障情况的测试集识别率由91.67%提升至98.96%,证明了该方法的可行性和有效性。

    Abstract:

    Industrial faults are rare and sporadic, so the number of fault database samples is generally insufficient. The condition of small sample fault database can easily cause problems such as over-fitting in traditional deep learning, which affects the accuracy of diagnosis. In order to increase the sample size, obtain the fault information, and improve the accuracy of fault diagnosis under the condition of small sample fault database, a method based on deep convolutional generative adversarial networks(DCGAN) is proposed. The checkerboard problem of traditional algorithm is improved through combining the traditional DCGAN algorithm with the nearest neighbor interpolation up-sampling and convolution(USCONV layer). After feature extraction and training of three-channel wavelet images, the model output realistically generated images. The model can accurately expand and enrich the sample set under the condition of small samples fault database, alleviate over fitting and other problems, and improve accuracy of diagnosis. The results show that the USCONV layer can significantly improve the checkerboard problem. In addition, the test accuracy of the diagnosis model for the test set containing various fault conditions before and after the expansion of small-sample-database is increased from 91.67% to 98.96%, which demonstrate the method is feasible and effective.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-10
  • 最后修改日期:2021-04-21
  • 录用日期:
  • 在线发布日期: 2023-08-02
  • 出版日期: 2023-08-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司