[1] 陈红霞, 狄方殿, 朱亚洲. 连续梁桥支座损伤识别方法[J]. 土木工程与管理学报, 2017, 34(4): 53-58, 70.CHEN Hongxia, DI Fangdian, ZHU Yazhou. Bearing damage detection of continious bridge[J]. Journal of Civil Engineering and Management, 2017, 34(4): 53-58, 70.(in Chinese)
[2] 梁栋, 陈磊, 杜延昭, 等. 基于高斯曲率模态相关系数的弯梁桥支座损伤研究[J]. 世界地震工程, 2018, 34(3): 69-77.LIANG Dong, CHEN Lei, DU Yanzhao, et al. Research on bearing damage for curved girder bridge based on Gaussian curvature mode correlation coefficients[J]. World Earthquake Engineering, 2018, 34(3): 69-77.(in Chinese)
[4] 闫宇智, 战家旺, 张楠, 等. 基于车激响应的桥梁支座脱空病害识别方法研究[J]. 桥梁建设, 2020, 50(2): 19-24.YAN Yuzhi, ZHAN Jiawang, ZHANG Nan, et al. Study of methods to identify bridge bearing disengagement based on vehicle-excited responses[J]. Bridge Construction, 2020, 50(2): 19-24.(in Chinese)
[5] 郭健, 裘力奇, 张新军, 等. 基于小波包分析的桥梁支座损伤识别试验研究[J]. 浙江工业大学学报, 2016, 44(6): 695-698.GUO Jian, QIU Liqi, ZHANG Xinjun, et al. An experimental study on damage identification of bridge bearings based on wavelet packet analysis[J]. Journal of Zhejiang University of Technology, 2016, 44(6): 695-698.(in Chinese)
[7] ALVES V, CURY A. A fast and efficient feature extraction methodology for structural damage localization based on raw acceleration measurements[J]. Structural Control and Health Monitoring, 2021, 28(7): e2748.
[8] 刘习军, 王正飞, 张素侠. 基于振动响应相关性的简支梁桥损伤识别方法[J]. 实验力学, 2019, 34(1): 29-37.LIU Xijun, WANG Zhengfei, ZHANG Suxia. On the damage identification method of simply-supported girder bridge based on vibration response correlation[J]. Journal of Experimental Mechanics, 2019, 34(1): 29-37.(in Chinese)
[9] FINOTTI R P, CURY A A, DE SOUZA BARBOSA F. An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements[J]. Latin American Journal of Solids and Structures, 2019, 16(2): e165.
[10] BISHEH H B, AMIRI G G, NEKOOEI M, et al. Damage detection of a cable-stayed bridge based on combining effective intrinsic mode functions of empirical mode decomposition using the feature selection technique[J]. Inverse Problems in Science and Engineering, 2021, 29(6): 861-881.
[11] YANEZ-BORJAS J J, VALTIERRA-RODRIGUEZ M, CAMARENA-MARTINEZ D, et al. Statistical time features for global corrosion assessment in a truss bridge from vibration signals[J]. Measurement, 2020, 160: 107858.
[12] DE ALMEIDA CARDOSO R, CURY A, BARBOSA F, et al. Unsupervised real-time SHM technique based on novelty indexes[J]. Structural Control and Health Monitoring, 2019, 26(7): e2364.
[13] 杨文光, 吴云洁, 王建敏. 基于熵权法的小样本灰色置信区间估计[J]. 郑州大学学报(理学版), 2016, 48(1): 51-56.YANG Wenguang, WU Yunjie, WANG Jianmin. Small sample grey confidence interval estimation based on entropy weight method[J]. Journal of Zhengzhou University (Natural Science Edition), 2016, 48(1): 51-56.(in Chinese)
[14] 陈圣群, 王应明, 施海柳. 多属性匹配决策的等级置信度融合法[J]. 系统工程学报, 2015, 30(1): 25-33.CHEN Shengqun, WANG Yingming, SHI Hailiu. Rank belief degrees fusion method for multi-arrtibute matching decision-making[J]. Journal of Systems Engineering, 2015, 30(1): 25-33.(in Chinese)
[15] 吕子文, 曾俊伟, 钱勇生, 等. 基于熵值法和灰色关联的综合运输发展评价[J]. 公路工程, 2018, 43(6): 73-77.Ziwen Lü, ZENG Junwei, QIAN Yongsheng, et al. Comprehensive transportation development evaluation based on entropy method and grey relation[J]. Highway Engineering, 2018, 43(6): 73-77.(in Chinese)