摘要:针对传统滚动轴承故障诊断方法训练时间长和效率低的问题,提出一种基于卷积神经网络(convolutional neural networks,简称CNN)和宽度学习系统(broad learning system,简称BLS)的故障诊断方法,实现了端到端的快速准确模式识别。首先,建立CNN与BLS结合的宽度卷积学习系统(broad convolutional learning system,简称BCLS),利用CNN提取信号特征和BLS进行分类,获得系统输出;其次,通过残差学习增加BLS层数,形成堆叠宽度卷积学习系统(stacked broad convolutional learning system,简称SBCLS),优化预测输出与真实标签的误差,对轴承故障模式进行识别;最后,通过试验将所提方法与3种BLS方法的预测结果进行了比较验证。结果表明,与几种常见故障诊断方法相比,所提方法诊断效果更佳,具有更高的准确率和训练效率,在边缘端的智能故障诊断中具有较好的应用前景。