基于CNN与BLS的滚动轴承故障诊断方法
作者:
作者单位:

1.青岛理工大学机械与汽车工程学院 青岛,266520;2.青岛大学计算机科学技术学院 青岛,266071

中图分类号:

TH17

基金项目:

山东省自然科学基金资助项目(ZR2019PEE018, ZR2020QE158);山东省科技型中小企业创新能力提升资助项目(2021TSGC1063);青岛市自然科学基金资助项目(23-2-1-216-zyyd-jch)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    针对传统滚动轴承故障诊断方法训练时间长和效率低的问题,提出一种基于卷积神经网络(convolutional neural networks,简称CNN)和宽度学习系统(broad learning system,简称BLS)的故障诊断方法,实现了端到端的快速准确模式识别。首先,建立CNN与BLS结合的宽度卷积学习系统(broad convolutional learning system,简称BCLS),利用CNN提取信号特征和BLS进行分类,获得系统输出;其次,通过残差学习增加BLS层数,形成堆叠宽度卷积学习系统(stacked broad convolutional learning system,简称SBCLS),优化预测输出与真实标签的误差,对轴承故障模式进行识别;最后,通过试验将所提方法与3种BLS方法的预测结果进行了比较验证。结果表明,与几种常见故障诊断方法相比,所提方法诊断效果更佳,具有更高的准确率和训练效率,在边缘端的智能故障诊断中具有较好的应用前景。

    参考文献
    [1] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8.LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1-8.(in Chinese)
    [2] 李可, 熊檬 ,宿磊, 等. 基于改进深层极限学习机的故障诊断方法[J]. 振动、测试与诊断, 2020, 40(6): 1120-1127.LI Ke, XIONG Meng, SU Lei, et al. Research on mechanical fault diagnosis method based on improved deep extreme learning machine[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(6): 1120-1127.(in Chinese)
    [3] ZHANG S, ZHANG S B, WANG B N, et al. Deep learning algorithms for bearing fault diagnostics-a comprehensive review[J]. IEEE Access, 2020, 8: 29857-29881.
    [4] 解晓婷, 李少波, 杨观赐, 等. 基于FFT与CS-SVM的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2019(4): 90-94.XIE Xiaoting, LI Shaobo, YANG Guanci, et al. Fault diagnosis of rolling bearing based on FFT and CS-SVM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(4): 90-94.(in Chinese)
    [5] MA J, WU J, WANG X. Fault diagnosis method based on wavelet packet-energy entropy and fuzzy kernel extreme learning machine[J]. Advances in Mechanical Engineering, 2018, 10(1): 1687814017751446.
    [6] HOANG D T, KANG H J. A survey on deep learning based bearing fault diagnosis[J]. Neurocomputing, 2018, 335: 327-335.
    [7] ZHANG W, PENG G L, LI C H, et al. A new deep learning model for fault diagnosis with good Anti-Noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425.
    [8] WU X Y, ZHANG Y, CHENG C M, et al. A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery[J]. Mechanical Systems and Signal Processing, 2021, 149: 107327.
    [9] LUO J Q, ZHU L C, CHEN M, et al. Imbalanced fault diagnosis of rotating machinery based on deep generative adversarial networks with gradient penalty[J]. Processes, 2021, 9(10): 1751.
    [10] GUO L, LEI Y G, XING S B, et al. Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7316-7325.
    [11] CHEN C L P, LIU Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24.
    [12] WANG Y, WANG C, KANG S, et al. Network-combined broad learning and transfer learning: a new intelligent fault diagnosis method for rolling bearings[J]. Measurement Science and Technology, 2020, 31(11): 115013.
    [13] YU W K, ZHAO C H. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081-5091.
    [14] ZHAO H M, ZHENG A A, DENG W, et al. Semi-supervised broad learning system based on manifold regularization and broad network[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2020, 67(3): 983-994.
    [15] ZHAO H M, ZHENG A A, XU J J, et al. Fault diagnosis method based on principal component analysis and broad learning system[J]. IEEE Access, 2019, 7: 99263-99272.
    [16] SAXE A M, KOH P W, CHEN Z H, et al. On random weights and unsupervised feature learning[C]∥Proceedings of the 28th International Conference on International Conference on Machine Learning. Madison, WI, USA: Omnipress, 2011: 1089-1096.
    [17] LIU Z L, CHEN C L P, FENG S, et al. Stacked broad learning system: from incremental flatted structure to deep model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 209-222.
    [18] LUO W J, LI Y J, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2016: 4905-4913.
    [19] CHEN Z Y, GRYLLIAS K, LI W H. Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine[J]. Mechanical Systems and Signal Processing, 2019, 133: 106272.
    [20] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143.QU Jianling, YU Lu, YUAN Tao, et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143.(in Chinese)
    [21] SHAO H, JIANG H, ZHAO H, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95: 187-204.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:364
  • 下载次数: 91
  • HTML阅读次数: 291
  • 引用次数: 0
历史
  • 收稿日期:2022-04-29
  • 最后修改日期:2022-09-06
  • 在线发布日期: 2024-10-15
您是第4518403位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!