摘要
随着物联网和通信技术的快速发展,现代工业装备海量运行数据被实时监测传输,推动装备服役阶段的故障预测与健康管理进入大数据时代。面对具有不确定性强、价值密度低及多源异构特点的装备运行大数据,传统浅层模型算法存在难以自主挖掘数据蕴含特征、对装备健康状态表征能力弱的先天不足。近年来,作为机器学习领域的研究热点,深度学习理论得到了学术界与工业界的广泛关注,相关的工业装备故障预测与健康管理(prognostics and health management, 简称PHM)研究与应用层出不穷,为解决大数据背景下的故障预测与健康管理难题提供了新的思路和技术手段。为此,笔者回顾了工业装备故障预测与健康管理技术发展历程;从异常检测、故障诊断以及故障预测3个方面综述了深度学习已取得的研究成果;讨论了深度学习在当下工业装备故障预测与健康管理中的热点话题;分析了该研究方向在工程实际中面临的挑战,并探讨应对这些挑战的有效措施和未来发展趋势。
◀column:专家论坛▶
随着现代工业装备复杂性、精密性、自动化以及智能化程度的不断提高,为了有效保障工业装备的安全可靠运行和经济性维护,PHM技术应运而
现在装备PHM方法的性能很大程度上取决于所提取的特征质量,即反映设备特性变化、趋势变化以及故障模型演化的能力,即如何有效学习并表征装备健康状态特征是PHM技术的核心。目前,传统特征提取方法受到以下问题的约束:
1) 特征提取过程严重依赖先验知识和专家经验,特征设计过程需要深厚的数学基础和丰富的诊断对象专业知识;
2) 无法从大工业大数据中获得统计意义上的健康特征表示,人工设计的特征难免以偏概全,无法准确表征装备健康;
3) 所提取的特征通常为对信息的浅层次表达,在处理复杂装备信号时,其泛化能力有限;
4) 所设计的特征普适性较差,往往需要根据装备系统特性、运行工况条件进行量身定制,当对象的系统物理特性发生改变时,所设计的特征需要相应调整更换。
随着计算能力的提高和出现高效的深层结构神经网络的训练方法,深度学习逐渐兴起。Hinton
笔者系统梳理了工业装备PHM中常见的深度学习模型,综述了国内外基于深度学习的PHM研究现状及研究热点,探讨了现存的主要问题,并展望了深度学习在PHM领域的未来研究方向及可能的解决方案。
PHM技术是用于改善并提高设备安全性和可靠性、保障执行任务成功率的重要手段,也是提高维修效率和节约维修成本的重要工具。PHM内涵极为丰富,主要包括传感器网络的数据采集和传输、装备状态监测、故障诊断、故障预测、健康管理和决策等。国际上众多标准组织,如IEEE和ISO等,已经围绕PHM发布一系列标

图1 工业装备PHM框架示意图
Fig.1 Illustration of PHM framework of industrial equipment
首先,PHM技术通过部署在装备上的传感器网络收集反映装备健康状态的相关数据,如振动、转速、温度、电流及声发射等。由于复杂运行环境以及传感器故障等因素,获取的数据往往质量较差,因此需要有效的信号预处理方法来保障数据质量。常见的数据质量保障方法包括数据规整、数据清洗及数据恢复。其次,对于获取的数据,需要进一步从中提取故障敏感特征信息,其中常见的方法包括基于信号处理技术的人工特征提取、特征选择、降维以及深度学习方法。机器学习算法通过提取到的特征进行异常检测、故障诊断及预测。最后,PHM技术根据故障诊断及预测状态制定维修决策,形成维修建议。总之,PHM技术通盘考虑了装备的状态监测、故障诊断、预测及维修决策等装备运维的关键过程,对于装备安全可靠运行意义重
PHM技术能否实现可靠的故障诊断、预测以及合理的维修策略制定,取决于其核心的数据分析方法。传统的基于人工特征提取的数据分析方法需要依赖专家经验,且难以避免繁琐的人工参数设计,无法充分契合工业大数据的特性。浅层机器学习模型对装备非线性监测数据的学习表征能力有限。为了克服PHM的局限,研究人员需要开发新的解决方案,深度学习为此提供了一套深具潜力的理论方法体系。
近年来,深度学习(deep learning,简称DL)或深度神经网络(deep neural networks,简称DNN)越来越受到各个领域研究人员的关注。通过利用多层神经网络的层次结构,以逐层处理的方式从数据中提取有效信息。深层结构保证了DNN对原始数据的多层次抽象表达,可以自动捕获海量数据中的复杂结构特征。鉴于其在特征学习方面的显著优势,DNN有效弥补了人工特征提取方法无法自适应特征学习的劣势,在处理工业装备监测大数据中显现出巨大潜力和迫切需求。基于深度学习的装备PHM已经成为领域的研究热
PHM研究领域中主流的深度学习基本模型包括DBN,AE,CNN,RNN和GAN。

图2 典型深度学习模型基本单元示意图
Fig.2 Illustration of the units in typical deep neural networks
DBN是第1个成功应用于PHM领域的深度学习模型,它由多个RBM堆叠形成。DBN的顶层是无方向性的,其他层自上而下连接。DBN的训练分为2个步骤:预训练和微调。预训练通过贪婪学习算法以自下而上的方式进行无监督学习。当网络通过预训练完成初始化,就可以通过有监督的方法利用标记数据对参数进行微调。DBN中无监督逐层预训练可以构造一系列高度非线性的映射关系,这是从装备监测信号中提取健康状态信息的关键。
Tamilselvan
AE是一种包含两阶段训练过程的无监督网络,在输出层实现对输入信号的重构。编码通过特征提取函数获得数据的隐状态,解码将隐状态映射回输入空间,获得数据的重建。与RBM类似,自动编码器可以通过堆叠形成深度模型,称之为堆叠自动编码器(stacked autoencoder, 简称SAE),其通过将上一层的隐状态作为下一层的输入,并以一种贪婪学习的方式逐层训练。在隐藏层维度大于输入层的超完备情况下,标准的AE常常面临无法从原始数据中学习到有用信息的困扰。因此,需要通过引入正则化或其他生成式建模方法对标准AE进行改进。常见的变种AE包括稀疏自编码器、降噪自编码器和变分自编码器等。
Verma
作为在PHM领域应用最为广泛的深度学习模型,CNN在处理具有网格状拓扑结构的数据方面显示出良好的效果。CNN与标准DNN的关键区别在于参数共享,这使得模型可以在信号中不同的位置捕捉特定的特征。
CNN模型起源于计算机视觉领域,用于处理2维图像数据。工业装备监测数据通常为1维时序数据。早期研究多数利用时频分析等技术将1维时序数据,如振动、温度、噪声等信号,转化为2维格式数据。Hoang
尽管从1维时序数据到2维格式数据的转换可以有效利用CNN模型,但信号处理环节增加了算法的复杂度,且信号处理参数设置也需要依靠专家经验。因此,更多的研究采用包含1维卷积核的CNN模型,建立端对端的PHM方法。Mo
RNN是一类包含反馈回路的深度学习模型,该类模型的优势在于可以保持之前单元的信息,因此能够从时间序列中捕捉长期的时间依赖关系,非常适用于时序数据,如自然语言和时间序列的处理。在训练过程中,隐藏单元根据当前输入在该时刻的激活和之前的隐藏状态依次更新。RNN仍然存在梯度消失或爆炸的问题,即在梯度传播回初始层的过程中,梯度会逐渐缩小并最终消失。另一方面,如果梯度大于1,它们会通过无数次的矩阵乘法累积起来,导致模型崩溃。长短时记忆(long short term memory,简称 LSTM)网络和门控递归单元(gated recurrent unit, 简称GRU)是RNN的变体,有助于缓解上述问题。
目前,RNN及其变体在工业装备故障诊断,尤其是故障预测方面已经存在诸多研究。Lei
GAN通常由判别器和生成器组成。作为模型的生成部分,生成器主要学习输入的分布并创建假数据。判别器的作用在于同时接受真实数据与生成器创建的假数据,并识别数据的真实性。GAN中的对抗部分主要由生成器与判别器以博弈的方式开展,训练过程类似于博弈论中判别器与生成器之间的最小最大双人博弈。原始GAN模型在生成器与判别器中完全使用全连接层,最近的研究开发了诸多基于AE,CNN以及RNN架构的变种GAN模型。工业装备PHM领域也涌现出大量基于GAN的研
除了上述代表性深度学习模型之外,工业装备PHM领域也用到了其他类型的深度学习模型,这类研究通常基于典型深度学习单元进行改进,使之适用于特定的PHM任务。
Zhu
工业装备异常检测重点关注如何利用在线监测数据,准确、稳定地检测异常及早期故障。在线异常检测有助于避免停机检修而造成的损失。不同于故障诊断的故障归类与原因分析,异常监测侧重于健康状态之外的装备异常状态报警。因此,异常检测模型训练无需大量典型标定的各类故障模式数据,可以仅通过正常数据进行无监督训练,异常监测在工业装备PHM中具有较强的工程环境适用性和明确的应用需求。
戴俊
故障诊断是保障工业装备安全可靠运行的关键环节。基于深度学习的故障诊断方法通过引入更深、更复杂的网络结构捕捉监测数据中的高阶、抽象特征信息,从而准确识别装备的健康状态,实现装备故障监测数据的在线诊断。
考虑工业装备现场运行环境特点及装备故障诊断本身的复杂特性,以数据为核心的深度学习方法需要考虑以下问题:①装备监测数据通常来自于多源传感器,不同测点、不同类型的监测数据可以从不同维度反映装备健康状态;②由于高可靠性要求,工业装备通常在健康状态条件下运行,监测数据表现出非平衡特点,典型故障数据往往极其有限;③深度学习模型通常假设训练数据和部署场景中的测试数据遵从独立同分布,然而工业装备运行工况,如转速和载荷等复杂多变,往往造成训练数据与测试数据间的分布漂移,制约了深度学习模型的诊断精度;④以旋转机械为代表的装备机械结构复杂,故障部件距离传感器安装位置具有较长的传递路径,故障信号往往表现出故障模式复杂、低信噪比及非平稳等特点,单一深度学习模型面临结构单一、特征提取能力不足的问题。
目前,相关研究充分考虑上述实际应用问题,主要聚焦信息融合下的深度学习故障诊断、考虑数据非平衡的深度学习故障诊断、基于小样本学习的深度学习故障诊断、复杂变工况下的深度学习故障诊断、基于领域自适应的深度学习故障诊断以及基于深度集成学习故障诊断等方面。
信息融合下的故障诊断旨在融合并利用多源传感器数据,在数据层、特征层以及决策层不同层级上对数据和信息进行关联、相关和综合,从而提高了模型算法的故障诊断能力。Zhang
在模型层面,考虑数据非平衡的深度学习故障诊断研究通过设计新的损失函数和模型结构来关注数据中的少数类别。Jia
在实际工业故障诊断任务中,装备故障数据极其有限,基于小样本学习的深度故障诊断方法在此情况下显现出优势。深度学习框架下的小样本学习方法通常基于原型网
由于工业装备在实际运行环境中工况多变,外部环境,如温度、压力和背景噪声等难以预测,从而引入不确定性因素。数据驱动下的深度学习故障诊断模型通常假设训练数据与测试数据独立同分布,因此在特定工况数据下的训练得到的模型难以准确诊断不同工况下的监测数据。复杂变工况致使的数据分布漂移是制约深度学习故障诊断模型的一个关键因素。国内外学者对此展开了深入研究,主要方法概括如下:①通过信号预处理降低工况变化致使的数据分布漂移;②利用迁移学习方法,主要包括领域自适应与预训练‑微调策略,将已知工况下的诊断知识迁移到目标工况,降低工况变化对模型的干扰;③研究对工况变化鲁棒且泛化的深度学习故障诊断模型。Ji
作为迁移学习理论方法的一个重要分支,领域自适应方法不仅可以解决深度学习模型在不同工况下的故障诊断问题,在处理其他故障诊断难题时也表现出潜在优势,例如不同传感器测点间的迁移诊断问题和不同装备间的迁移诊断问题。深度学习下的领域自适应故障诊断方法核心思想为不同域下的数据、特征等层面的分布适配,减小领域差异。目前,主流的领域自适应深度学习故障诊断方法可以划分为MMD最小化和对抗训练。Lu
集成学习通过构建并以一定策略集成多个学习单元来完成学习任务,达到“博采众长”的目的。集成学习有望改善模型故障诊断能力,提高模型泛化性能。Shao
故障诊断强调故障报警和故障类型及其原因的归类分析,而故障预测更加关注对工业装备潜在故障的早期预警,对装备未来状态退化趋势以及剩余使用寿命(remaining useful life, 简称RUL)做出预测。装备当前运行健康状态数据和历史数据是故障预测的基础。故障预测的核心内容通常包括:①评估装备当前的健康状态,构建健康指标(health indicator, 简称HI),分析装备可能出现的退化趋势;②估计未来故障发生的时间以及预测装备RUL。
深度学习是一类最先进的数据驱动故障预测方法。在HI构建方面,赵光权
工业装备HI构建是RUL预测的基础,合适的HI构建方法可以有效保障后续故障预测精度。研究表明,深度学习在工业装备HI构建方面的优越性能,既能有效避免HI构建过分依赖专家经验和人工特征提取的弊端,也能保证提取的HI可以有效反映装备退化趋势。
准确地进行RUL预测为确定装备最佳维护时间提供依据,以实现经济性运维的目的。传统的基于物理退化模型的RUL预测方法需要考虑装备内部失效机理,在实际复杂工业装备中的应用局限性较大。数据驱动方法可以直接从状态监测数据中挖掘健康状态特征变化规律,从而实现RUL预测。深度学习框架下的数据驱动RUL预测方法具有良好的应用前景。
Listou‑Ellefsen
除了上述研究广泛采用的开源数据集,如商用模块化航空推进系统仿真数据(C‑MAPSS‑Data
随着工业装备PHM领域步入大数据时代,对模型算法的智能化程度与自适应性的要求日益提高,基于数据驱动的PHM理论方法研究也在不断发展完善。然而,鉴于工业装备PHM应用环境的复杂性与特殊性,将深度学习理论方法灵活应用于工程实际问题仍然面临许多新的挑战。
1) 深度学习通常立足数据为王,工业装备监测数据质量普遍较差,具体表现为数据噪声、缺失、异常以及延迟等特点,深度学习方法难以从低质量数据中有效挖掘装备健康状态特征信息。此外,工业装备监测数据具有多源异构的特点,信号测点采样形式多样,一致性差,随机因素干扰严重,这些均大大增加了深度学习PHM方法的应用难度。
2) 现有基于深度学习的工业装备PHM决策模型通常以纯数据驱动的方式执行,其训练学习方式无法考虑目标对象的物理知识,因此训练所得模型非常脆弱,其普适性与鲁棒性能难以保证。
3) 深度学习的工业装备PHM方法通常基于闭环假设,即仅能保证模型在已知可见数据中的效果。对于已知分布外(out‑of‑distribution, 简称OOD)数据,模型通常表现出较差的泛化性能。尽管迁移学习可以有效解决领域分布漂移的问题,但其仍然需要获取特定的目标域数据,在工程实际应用中存在一定局限性。
4) 深度学习的工业装备PHM方法目前仍处于“黑箱模型”阶段,模型的可解释性一直是制约深度学习方法安全可靠性应用的关键问题。“收集数据‑模型调参”的训练模式无法清晰解释模型参数物理含义,无法由模型输出诊断结果准确溯源到故障原始特征及故障原因。
5) 在工程实际中,无论是故障诊断还是故障预测,不确定性问题始终存在。利用深度学习的工业装备PHM方法大多为确定性表达。在确定性表达的深度学习模型中,模型输出的准确性与可靠性难以评价,高维数据、噪声、不确定的输入数据以及有限的模型知识往往造成误诊断,模型智能诊断及预测结果的不确定性难以评估。
针对上述深度学习的工业装备PHM研究难点与挑战,未来的研究方向总结如下。
1) 工业装备监测数据质量保障方法研究与数据标准化。建立监测数据质量保障方法体系可以有效提高以深度学习为代表的PHM方法在工程实际问题中的适应性,成为本领域的首要问题。监测数据质量保障需要综合考虑数据规整、数据清洗以及数据恢复方法。针对特定装备和特定监测物理量,制定数据监测、传输及存储相关标准,为工业装备PHM技术高效可靠应用夯实数据基础。
2) 知识驱动与数据驱动融合的深度学习PHM理论方法研究。将领域知识以及物理模型形成约束融入深度学习之中,有助于提高模型的普适性与鲁棒性。近年来,内嵌物理知识的神经网络(physics‑informed neural networks, 简称PINN)将物理偏微分方程嵌入神经网络中进行学习求解,有效提高了模型的泛化能力,保证了模型所学特征符合物理规律,弥补了纯数据驱动方法的劣势。以PINN为代表的知识驱动与数据驱动的融合方法给工业装备PHM带来了新的思路。
3) 高可信深度学习PHM框架构建。高可信PHM框架旨在通过结合统计学、不确定性量化和概率建模等方法,缓解深度学习不可解释的弊端,提高PHM模型的安全性和可靠性,最终实现高可信智能决策。

图3 高可信深度学习PHM框架示意图
Fig.3 Illustration of the deep learning-based trustworthy PHM framework
围绕深度学习开展了工业装备PHM研究综述,对工业装备PHM中的典型深度学习模型进行介绍和总结。围绕工业装备PHM中的3个核心问题,即异常检测、故障诊断与故障预测,总结了深度学习相关的国内外研究现状和代表性工作。探讨了现有深度学习PHM研究中存在的问题与挑战,并从夯实数据基础、知识驱动与数据驱动融合和高可信PHM框架构建等方面进行展望,推动深度学习的工业装备PHM理论方法研究进一步向工程实际应用转化。
参考文献
LEE J, WU F, ZHAO W, et al. Prognostics and health management design for rotary machinery systems‑reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2014, 42(1): 314-334. [百度学术]
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. [百度学术]
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [百度学术]
VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: a brief review[J]. Computational Intelligence and Neuroscience, 2018, 2018: 7068349. [百度学术]
RAZZAK M I, NAZ S, ZAIB A. Deep learning for medical image processing: overview, challenges and the future BT - classification in bioapps: automation of decision making[M]. Cham: Springer International Publishing, 2018: 323-350. [百度学术]
OTTER D W, MEDINA J R, KALITA J K. A survey of the usages of deep learning for natural language processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624. [百度学术]
BAKATOR M, RADOSAV D. Deep learning and medical diagnosis: a review of literature[J]. Multimodal Technologies and Interaction, 2018, 2(3): 47. [百度学术]
WEI J, HE J, CHEN K, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert Systems with Applications, 2017, 69: 2939. [百度学术]
蒋觉义, 李璠, 曾照洋. 故障预测与健康管理标准体系研究[J]. 测控技术, 2013, 32(11): 1-5,9. [百度学术]
JIANG Jueyi, LI Fan, ZENG Zhaoyang. Research on standard architecture of prognostics and health management[J]. Measurement & Control Technology, 2013, 32(11): 1-5,9.(in Chinese) [百度学术]
LI R, VERHAGEN W J C, CURRAN R. A systematic methodology for prognostic and health management system architecture definition[J]. Reliability Engineering & System Safety, 2020,193: 106598. [百度学术]
REZAEIANJOUYBARI B, SHANG Y. Deep learning for prognostics and health management: state of the art, challenges, and opportunities[J]. Measurement, 2020, 163: 107929. [百度学术]
LEI Y, YANG B, JIANG X, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587. [百度学术]
FINK O, WANG Q, SVENSÉN M, et al. Potential, challenges and future directions for deep learning in prognostics and health management applications[J]. Engineering Applications of Artificial Intelligence, 2020, 92: 103678. [百度学术]
TAMILSELVAN P, WANG P. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115: 124-135. [百度学术]
TRAN V T, ALTHOBIANI F, BALL A. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks[J]. Expert Systems with Applications, 2014, 41(9): 4113-4122. [百度学术]
SHAO H, JIANG H, ZHANG X, et al. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26(11): 115002. [百度学术]
GUAN Z, LIAO Z, LI K, et al. A precise diagnosis method of structural faults of rotating machinery based on combination of empirical mode decomposition, sample entropy, and deep belief network[J]. Sensors, 2019, 19(3): 591. [百度学术]
VERMA N K, GUPTA V K, SHARMA M, et al. Intelligent condition based monitoring of rotating machines using sparse auto-encoders[C]∥2013 IEEE Conference on Prognostics and Health Management (PHM).[S.l.]:IEEE,2013. [百度学术]
LU C, WANG Z Y, QIN W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130: 377-388. [百度学术]
OLIAEE S M E, SHOOREHDELI M A, TESHNEHLAB M. Faults detecting of high-dimension gas turbine by stacking DNN and LLM[C]∥2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). Kerman, Iran:IEEE,2018. [百度学术]
雷亚国, 贾峰, 周昕,等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56. [百度学术]
LEI Yaguo, JIA Feng, ZHOU Xin, et al. A Deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56.(in Chinese) [百度学术]
HOANG D T, KANG H J. Convolutional neural network based bearing fault diagnosis[C]∥International Conference on Intelligent Computing. Cham:Springer,2017. [百度学术]
VERSTRAETE D, FERRADA A, DROGUETT E L, et al. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings[J]. Shock and Vibration, 2017, 2017: 5067651. [百度学术]
YOO Y, BAEK J G. A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network[J]. Applied Sciences, 2018, 8(7): 1102. [百度学术]
AGHAZADEH F, TAHAN A, THOMAS M. Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(9): 3217-3227. [百度学术]
MO Z, ZHANG Z, TSUI K L. The variational kernel-based 1-D convolutional neural network for machinery fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10. [百度学术]
WU X, PENG Z, REN J, et al. Rub-impact fault diagnosis of rotating machinery based on 1-D convolutional neural networks[J]. IEEE Sensors Journal, 2020, 20(15): 8349-8363. [百度学术]
ZHANG Y, QIN N, HUANG D, et al. High-accuracy and adaptive fault diagnosis of high-speed train bogie using dense-squeeze network[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2501-2510. [百度学术]
KAO I H, WANG W J, LAI Y H, et al. Analysis of permanent magnet synchronous motor fault diagnosis based on learning[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(2): 310-324. [百度学术]
LEI J, LIU C, JIANG D. Fault diagnosis of wind turbine based on long short-term memory networks[J]. Renewable Energy, 2019, 133: 422-432. [百度学术]
ZHAO R, WANG D, YAN R, et al.Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1539-1548. [百度学术]
ZHAO C, HUANG X, LI Y, et al. A novel cap-LSTM model for remaining useful life prediction[J]. IEEE Sensors Journal, 2021, 21(20): 23498-23509. [百度学术]
HUANG C G, HUANG H Z, LI Y F. A bidirectional LSTM prognostics method under multiple operational conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8792-8802. [百度学术]
XU Q, CHEN Z, WU K, et al. KDnet-RUL: a knowledge distillation framework to compress deep neural networks for machine remaining useful life prediction[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 2022-2032. [百度学术]
WAN W, HE S, CHEN J, et al. QSCGAN: an un-supervised quick self-attention convolutional GAN for LRE bearing fault diagnosis under limited label-lacked data[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-16. [百度学术]
GUO Q, LI Y, SONG Y, et al. Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2044-2053. [百度学术]
DIXIT S, VERMA N K, GHOSH A K. Intelligent fault diagnosis of rotary machines: conditional auxiliary classifier GAN coupled with meta learning using limited data[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3517811. [百度学术]
YANG J, LIU J, XIE J, et al. Conditional GAN and 2-D CNN for bearing fault diagnosis with small samples[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12. [百度学术]
LIU H, ZHAO H, WANG J, et al. LSTM-GAN-AE: a promising approach for fault diagnosis in machine health monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. [百度学术]
WANG R, CHEN Z, ZHANG S, et al. Dual-attention generative adversarial networks for fault diagnosis under the class-imbalanced conditions[J]. IEEE Sensors Journal, 2022, 22(2): 1474-1485. [百度学术]
ZHU Z, PENG G, CHEN Y, et al. A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis[J]. Neurocomputing, 2019, 323: 62-75. [百度学术]
ZHAO M, KANG M, TANG B, et al. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4290-4300. [百度学术]
LIU R, WANG F, YANG B, et al. Multiscale kernel based residual convolutional neural network for motor fault diagnosis under nonstationary conditions[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3797-3806. [百度学术]
HE Q, PANG Y, JIANG G, et al. A spatio-temporal multiscale neural network approach for wind turbine fault diagnosis with imbalanced SCADA data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6875-6884. [百度学术]
LI T, ZHAO Z, SUN C, et al. Multireceptive field graph convolutional networks for machine fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12739-12749. [百度学术]
ZHAO X, JIA M, LIU Z. Semisupervised graph convolution deep belief network for fault diagnosis of electormechanical system with limited labeled data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5450-5460. [百度学术]
戴俊, 王俊, 朱忠奎,等. 基于生成对抗网络和自动编码器的机械系统异常检测[J]. 仪器仪表学报, 2019, 40(9): 16-26. [百度学术]
DAI Jun, WANG Jun, ZHU Zhongkui, et al. Anomaly detection of mechanical systems based on generative adversarial network and auto-encoder[J]. Chinese Journal of Scientific Instrument, 2019, 40(9): 16-26.(in Chinese) [百度学术]
毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J].自动化学报, 2022, 48(1): 302-314. [百度学术]
MAO Wentao, TIAN Siyu, DOU Zhi, et al. A new deep transfer learning-based online detection method of rolling bearing early fault[J]. Acta Automatica Sinica, 2022, 48(1): 302-314.(in Chinese) [百度学术]
向玲, 王朋鹤, 李京蓄. 基于CNN-LSTM的风电机组异常状态检测[J]. 振动与冲击, 2021, 40(22): 11-17. [百度学术]
XIANG Ling,WANG Penghe,LI Jingxu. Abnormal state detection of wind turbines based on CNN-LSTM[J]. Journal of Vibration and Shock, 2021, 40(22): 11-17.(in Chinese) [百度学术]
许勇, 蔡云泽, 宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报, 2022, 56(3): 267-278. [百度学术]
XU Yong, CAI Yunze, SONG Lin. Review of research on condition assessment of nuclear power plant equipment based on data-driven[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 267-278.(in Chinese) [百度学术]
MIELE E S, BONACINA F, CORSINI A. Deep anomaly detection in horizontal axis wind turbines using graph convolutional autoencoders for multivariate time series[J]. Energy and AI, 2022, 8: 100145. [百度学术]
XIANG L, YANG X, HU A, et al. Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks[J]. Applied Energy, 2022, 305: 117925. [百度学术]
WANG H, LIU X, MA L, et al. Anomaly detection for hydropower turbine unit based on variational modal decomposition and deep autoencoder[J]. Energy Reports, 2021, 7: 938-946. [百度学术]
YANG L, MA Y, ZENG F, et al. Improved deep learning based telemetry data anomaly detection to enhance spacecraft operation reliability[J]. Microelectronics Reliability, 2021, 126: 114311. [百度学术]
ZHANG Y, LI C, WANG R, et al. A novel fault diagnosis method based on multi-level information fusion and hierarchical adaptive convolutional neural networks for centrifugal blowers[J]. Measurement, 2021, 185: 109970. [百度学术]
ZHANG X, GUO X. Fault diagnosis of proton exchange membrane fuel cell system of tram based on information fusion and deep learning[J]. International Journal of Hydrogen Energy, 2021, 46(60): 30828-30840. [百度学术]
GÜLTEKIN Ö, CINAR E, ÖZKAN K, et al. Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle[J]. Expert Systems with Applications, 2022, 200: 117055. [百度学术]
SHAO H, LIN J, ZHANG L, et al. A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance[J]. Information Fusion, 2021, 74: 65-76. [百度学术]
JIA F, LEI Y, LU N, et al. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J]. Mechanical Systems and Signal Processing, 2018, 110: 349-367. [百度学术]
GENG Y, WANG Z, JIA L, et al. Bogie fault diagnosis under variable operating conditions based on fast kurtogram and deep residual learning towards imbalanced data[J]. Measurement, 2020, 166: 108191. [百度学术]
ZHAO X, JIA M, LIN M. Deep laplacian auto-encoder and its application into imbalanced fault diagnosis of rotating machinery[J]. Measurement, 2020, 152: 107320. [百度学术]
ZHAO B, ZHANG X, LI H, et al. Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions[J]. Knowledge-Based Systems, 2020, 199: 105971. [百度学术]
ZHANG X, ZHOU J, CHEN W. Data-driven fault diagnosis for PEMFC systems of hybrid tram based on deep learning[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13483-13495. [百度学术]
JIANG X, GE Z. Data augmentation classifier for imbalanced fault classification[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(3): 1206-1217. [百度学术]
ZHANG T, CHEN J, XIE J, et al. SASLN: signals augmented self-taught learning networks for mechanical fault diagnosis under small sample condition[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. [百度学术]
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[J]. Advances in Neural Information Processing Systems, 2017, 30: 1-11. [百度学术]
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[J]. Advances in Neural Information Processing Systems, 2016, 29: 1-9. [百度学术]
KOCH G, ZEMEL R, SALAKHUTDINOV R, et al. Siamese neural networks for one-shot image recognition[C]∥ICML Deep Learning Workshop. France:ICML,2015. [百度学术]
SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE,2018. [百度学术]
ZHANG A, LI S, CUI Y, et al. Limited data rolling bearing fault diagnosis with few-shot learning[J]. IEEE Access, 2019, 7: 110895-110904. [百度学术]
WU J, ZHAO Z, SUN C, et al. Few-shot transfer learning for intelligent fault diagnosis of machine[J]. Measurement, 2020, 166: 108202. [百度学术]
DING P, JIA M, ZHAO X. Meta deep learning based rotating machinery health prognostics toward few-shot prognostics[J]. Applied Soft Computing, 2021, 104: 107211. [百度学术]
JI M, PENG G, HE J, et al. A two-stage intelligent bearing-fault-diagnosis method using order-tracking and a one-dimensional convolutional neural network with variable speeds[J]. Sensors, 2021, 21(3): 675. [百度学术]
WEN L, GAO L, LI X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136-144. [百度学术]
CHEN Z, HE G, LI J, et al. Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8702-8712. [百度学术]
SHAO H, XIA M, HAN G, et al. Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3488-3496. [百度学术]
HAN T, LI Y F, QIAN M. A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3520011. [百度学术]
LU W, LIANG B, CHENG Y, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2296-2305. [百度学术]
LI X, ZHANG W, DING Q, et al. Multi-layer domain adaptation method for rolling bearing fault diagnosis[J]. Signal Processing, 2019, 157: 180-197. [百度学术]
LI X, ZHANG W, DING Q, et al. Diagnosing rotating machines with weakly supervised data using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 1688-1697. [百度学术]
WANG Q, MICHAU G, FINK O. Domain adaptive transfer learning for fault diagnosis[C]∥2019 Prognostics and System Health Management Conference (PHM-Paris). Paris:IEEE,2019. [百度学术]
SHAO H, JIANG H, LIN Y, et al. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders[J]. Mechanical Systems and Signal Processing, 2018, 102: 278-297. [百度学术]
XU Y, LI Z, WANG S, et al. A hybrid deep-learning model for fault diagnosis of rolling bearings[J]. Measurement, 2021, 169: 108502. [百度学术]
LIANG T, WU S, DUAN W, et al. Bearing fault diagnosis based on improved ensemble learning and deep belief network[C]∥Journal of Physics: Conference Series. Hangzhou,China:IOP Publishing,2018. [百度学术]
CHEN Z, LI W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693-1702. [百度学术]
MA S, CHU F. Ensemble deep learning-based fault diagnosis of rotor bearing systems[J]. Computers in Industry, 2019, 105: 143-152. [百度学术]
赵光权, 刘小勇, 姜泽东,等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018, 39(6): 82-88. [百度学术]
ZHAO Guangquan, LIU Xiaoyong, JIANG Zedong, et al. Unsupervised health indicator of bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 82-88.(in Chinese) [百度学术]
FAN Y, XIAO F, LI C, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741. [百度学术]
GONG Q, WANG P, CHENG Z. An encoder-decoder model based on deep learning for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2022, 46: 103804. [百度学术]
PENG K, JIAO R, DONG J, et al. A deep belief network based health indicator construction and remaining useful life prediction using improved particle filter[J]. Neurocomputing, 2019, 361: 19-28. [百度学术]
PAN Y, HONG R, CHEN J, et al. A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox[J]. Renewable Energy, 2020, 152: 138-154. [百度学术]
SHE D, JIA M. Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate[J]. Measurement, 2019, 135: 368-375. [百度学术]
CHEN D, QIN Y, WANG Y, et al. Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction[J]. ISA Transactions, 2021, 114: 44-56. [百度学术]
HUANG C G, YIN X, HUANG H Z, et al. An enhanced deep learning-based fusion prognostic method for RUL prediction[J]. IEEE Transactions on Reliability, 2020, 69(3): 1097-1109. [百度学术]
LISTOU-ELLEFSEN A, BJØRLYKHAUG E, ÆSØY V, et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183: 240-251. [百度学术]
CHEN J, JING H, CHANG Y, et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety, 2019, 185: 372-382. [百度学术]
LI X, ZHANG W, DING Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J]. Reliability Engineering & System Safety, 2019, 182: 208-218. [百度学术]
AL-DULAIMI A, ZABIHI S, ASIF A, et al. A multimodal and hybrid deep neural network model for remaining useful life estimation[J]. Computers in Industry, 2019, 108: 186-196. [百度学术]
WANG B, LEI Y, LI N, et al. Multiscale convolutional attention network for predicting remaining useful life of machinery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7496-7504. [百度学术]
LIN Y H, LI G H. A Bayesian deep learning framework for RUL prediction incorporating uncertainty quantification and calibration[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 7274-7284. [百度学术]
VOLLERT S, THEISSLER A. Challenges of machine learning-based RUL prognosis: a review on NASA′s C-MAPSS data set[C]∥2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Vasteras, Sweden:IEEE,2021. [百度学术]
EKER O F, CAMCI F, JENNIONS I K. Major challenges in prognostics: study on benchmarking prognostics datasets[C]∥PHM Society European Conference. Dresden, Germany:PHM Society,2012. [百度学术]