摘要
解调分析的关键在于准确找到合适的解调频带,针对此问题,提出一种基于快速谱相关(fast spectral correlation, 简称Fast⁃SC)和包络谱谱峰因子(crest of envelope spectrum, 简称EC)的解调频带确定方法,应用于滚动轴承故障检测。首先,对信号进行Fast⁃SC计算,采用考虑滚动体滑移误差的故障频率区间作集成谱相关切片并将其作为目标谱相关曲线,根据其最大值确定解调频带的中心频率搜索中心;其次,用同时考虑冲击信号强度与周期性的EC进行频带优化选择,自适应获得优化的滤波参数组;最后,根据所得滤波参数组对信号进行带通滤波,并求其包络谱,实现轴承故障特征频率提取。仿真和实验表明,与Autogram解调算法相比,所提方法降噪能力更强,解调频带的选择更优。
滚动轴承是旋转机械的核心部件之一,其运行状态监测和故障诊断是机械设备健康维护的重要组成部
解调分析是滚动轴承故障诊断的有效方法,其可从复杂信号中解调出故障对应的调制信号(故障频率),实现对故障特征的提
学者们在滚动轴承解调频带自适应选取方面开展了大量研究。文献[
笔者提出基于Fast⁃SC和EC的解调频带优化方法,首先,根据Fast⁃SC算法求谱相关值;其次,以理论故障频率的值沿载波频率轴做切片,考虑到滚动体产生随机滑移导致理论故障频率与实际故障频率出现误
Fast⁃SC是基于短时傅里叶变换(short⁃time fourier transform, 简称STFT)的一种谱相关的快速算法,快速谱相关定
(1) |
其中:Sx(·)为扫描谱相关;(·)为核函数;f为载波频率;α为循环频率;Δf为频率分辨率;p为接近循环频率的频率分辨率倍数,最大值为Nw/2R,Nw为STFT的窗宽,R为STFT窗的移动步长。
与传统峭度指标只能反映冲击强弱、不能反映冲击的周期性不同,EC能同时度量冲击的能量和周期性,其在评价包络谱中感兴趣的冲击强弱具有一定的优势。假设信号为x(t),其包络谱为ENV(n),n= 0,1,…,N-1,则EC为包络谱中的最大值(ENVmax)与其均方根值(ENVrms)之比,可近似表示包络谱中周期成分所占的能量
(2) |
(3) |
(4) |
在包络谱中感兴趣的成分是故障特征频率,为避免转频幅值过高导致EC失效,在进行包络谱最大值和均方根值计算时,定义[2fr,fs/2](fr为转频;fs为采样频率)作为有效区
根据Fast⁃SC在轴承故障振动信号中的应用,轴承发生故障时,故障频率即循环频率α会集中分布在载波频率f的一段带宽内,该区域的谱相关值较大,因此可判定该区域为合适的解调频带。在噪声比较大的工况下,微弱的故障信号容易被噪声覆盖,根据谱相关值难以自适应找到合适的f。谱相关切片具有增强故障特征,减小干扰的作
(5) |
其中:αx为循环频率积分区间。
根据积分区间做谱相关积分获得目标谱相关曲线,选取目标谱相关曲线中谱相关值最大时对应的载波频率作为中心频率搜索中心,其计算公式为
(6) |
其中:f为载波频率;fn为解调频带的中心频率搜索中心;表示各f对应的谱相关值;argmax{·}表示取最大值参数,即取谱相关值最大时所对应的频率。
为了自适应选择优化的滤波参数组{fc, bw} (fc为中心频率,bw为带宽),增加滤波器参数寻优结果的可信度,引入EC进行解调频带优化选择。
根据
(7) |
其中:EC(·)表示滤波后信号的EC值;argmax{·}表示把fni和Δfx区间内EC最大时的参数组合作为最终优化的滤波参数组{fc, bw}。
本研究方法的流程如

图1 本研究方法的流程图
Fig.1 Flowchart of the method in this paper
1) 对振动信号进行Fast⁃SC计算;
2) 根据轴承参数计算轴承的理论故障特征频率fx,根据
3) 由
4) 根据步骤3得到的优化滤波参数组对信号进行带通滤波并求其包络谱,从而实现故障特征提取。
仿真轴承外圈故障振动信号验证本研究方法,仿真模
(8) |
其中:x1(t)为外圈故障冲击的仿真信号;n(t)为高斯白噪声;fcn为外圈故障激起的共振频率;Si为第i次冲击的幅值;T为外圈的故障周期;ζ为阻尼系数;τi为滚动体产生第i次冲击引起的随机滑移。
仿真中设定的参数为:采样频率fs为12 kHz;故障特征频率(1/T)为160 Hz;共振频率fcn为3 kHz;幅值S为2; 阻尼系数ζ为0.05;随机滑移τi为2%T;仿真信号的信噪比为-10 dB。
将上述参数代入

图2 仿真信号的时域波形
Fig.2 Time domain waveform of simulated signal

图3 仿真信号的Autogram
Fig.3 Autogram of simulated signal

图4 Autogram算法获得的仿真信号包络谱
Fig.4 Envelope spectrum of the simulated signal obtained by Autogram algorithm
应用所提方法对仿真信号进行分析,首先对信号进行Fast⁃SC计算,然后根据仿真设定的轴承外圈故障特征频率fo为160 Hz,通过

图5 仿真信号的目标谱相关曲线
Fig.5 Target spectrum correlation curve of simulated signal
根据所得的优化滤波器组对信号进行带通滤波,并求其包络谱,所提方法获得的仿真信号包络谱如

图6 所提方法获得的仿真信号包络谱
Fig.6 Envelope spectrum of simulated signal obtained by proposed method
对比
为了验证所提方法的有效性,分别用公开轴承故障数据和本实验室实验台数据进行验证。
公开数据采用NASA的滚动轴承的外圈故障数
轴承型号 | 节圆 半径/mm | 滚动体 直径/mm | 滚动体 个数 | 接触角/ (°) |
---|---|---|---|---|
ZA⁃2115 N205EM |
71.501 38.500 |
8.407 4 7.940 0 |
16 12 |
15.171 0 |
轴承外圈的理论故障频率的计算公式为
(9) |
其中:fr为转频;D为节圆半径;d为滚动体直径;n为滚动体个数;α为接触角。
将ZA⁃2115轴承参数代入

图7 实验1的包络谱
Fig.7 Envelope spectrum of experiment 1
对实验1信号进行Autogram分析,结果见

图8 实验1的Autogram
Fig.8 Autogram of experiment 1

图9 Autogram算法获得的实验1包络谱
Fig.9 Envelope spectrum of experiment 1 obtained by Autogram algorithm
应用本研究方法对信号进行分析,通过

图10 实验1的目标谱相关曲线
Fig.10 Target spectrum correlation curve of experiment 1
根据所得的优化滤波器组对信号进行带通滤波,并求其包络谱,所提方法获得的实验1包络谱如

图11 所提方法获得的实验1包络谱
Fig.11 Envelope spectrum of experiment 1 obtained by proposed method
对比
为了进一步验证所提方法的有效性,在QPZZ⁃Π实验平台上模拟外圈故障对本研究算法进行验证,如

图12 QPZZ-Π实验平台与轴承故障
Fig.12 QPZZ-Π test platform and fault of bearing
对信号进行包络分析,实验2的包络谱如

图13 实验2的包络谱
Fig.13 Envelope spectrum of experiment 2
对实验2信号进行Autogram分析,结果如

图14 实验2的Autogram
Fig.14 Autogram of experiment 2

图15 Autogram算法获得的实验2包络谱
Fig.15 Envelope s spectrum of experiment 2 obtained by Autogram algorithm
用本研究所提方法进行验证,同理求得实验2的目标谱相关曲线如

图16 实验2的目标谱相关曲线
Fig.16 Target spectrum correlation curve of experiment 2
根据所得的优化滤波器组对信号进行带通滤波,并求其包络谱,所提方法获得的实验2包络谱见

图17 所提方法获得的实验2包络谱
Fig.17 Envelope spectrum of experiment 2 obtained by proposed method
对比
综上所述,与Autogram算法对比,本研究方法能有效识别合适的解调频带,降噪能力更强,在轴承故障特征提取中效果更好。
提出的基于Fast⁃SC和EC的滚动轴承故障检测方法与Autogram对比,所提方法抗干扰能力更强,降噪效果更好。该方法考虑到随机滑移的影响,采用集成谱相关切片的形式获得目标谱相关曲线,从而增强了故障特征频率与载波频率的相关性,使解调频带的选择更具鲁棒性。本研究算法有利于自适应确定合适的解调频带,从而达到故障检测的目的,具有一定的工程应用前景。
参 考 文 献
WANG Y, XIANG J, MARKERT R , et al. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: a review with applications[J]. Mechanical Systems and Signal Processing, 2016(66/67):679-698. [百度学术]
张云强,张培林,王怀光,等. 基于双时域微弱故障特征增强的轴承早期故障智能识别[J].机械工程学报,2016,52(21):96-103. [百度学术]
ZHANG Yunqiang, ZHANG Peilin, WANG Huaiguang, et al. Rolling bearing early fault intelligence recognition based on weak fault feature enhancement in time-time domain[J]. Journal of Mechanical Engineering, 2016,52(21):96-103. (in Chinese) [百度学术]
任学平, 黄慧杰, 王朝阁,等. 改进的TQWT在滚动轴承早期故障诊断的应用[J]. 振动、测试与诊断,2020, 40(2):317-325. [百度学术]
RENG Xueping, HUANG Huijie, WANG Chaoge, et al. Application of improved TQWT in early fault diagnosis of rolling bearing[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(2):317-325. (in Chinese) [百度学术]
张龙, 熊国良, 黄文艺. 复小波共振解调频带优化方法和新指标[J]. 机械工程学报, 2015, 51(3):129-138. [百度学术]
ZHANG Long, XIONG Guoliang, HUANG Wenyi. New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of Mechanical Engineering, 2015, 51(3):129-138. (in Chinese) [百度学术]
ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1):108-124. [百度学术]
从飞云, 陈进, 董广明. 基于谱峭度和AR模型的滚动轴承故障诊断[J]. 振动、测试与诊断, 2012, 32(4):538-541. [百度学术]
CONG Feiyun, CHEN Jin, DONG Guangming. Spectral kurtosis and AR model based method for fault diagnosis of rolling bearings[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(4):538-541. (in Chinese) [百度学术]
王宏超, 陈进, 董广明,等. 基于快速kurtogram算法的共振解调方法在滚动轴承故障特征提取中的应用[J]. 振动与冲击, 2013, 32(1):35-37. [百度学术]
WANG Hongchao, CHEN Jin, DONG Guangming, et al. Application of resonance demodulation in rolling bearing fault feature extraction based on fast computation of kurtogram[J]. Journal of Vibration and Shock, 2013, 32(1):35-37. (in Chinese) [百度学术]
代士超, 郭瑜, 伍星,等. 基于子频带谱峭度平均的快速谱峭度图算法改进[J]. 振动与冲击, 2015, 34(7):98-102. [百度学术]
DAI Shichao, GUO Yu, WU Xing, et al. Improvement on fast kurtogram algorithm based on sub-frequency-band spectral kurtosis average[J]. Journal of Vibration and Shock, 2015, 34(7):98-102. (in Chinese) [百度学术]
李红贤, 汤宝平, 韩延,等. 基于增强熵权峭度图的滚动轴承最优频带解调的故障诊断[J]. 振动与冲击, 2019, 38(17):24-31. [百度学术]
LI Hongxian, TANG Baoping, HAN Yan, et al. Fault diagnosis of rolling bearings using optimal demodulation frequency band based on enhanced entropy weight kurtosis graph[J]. Journal of Vibration and Shock, 2019, 38(17):24-31. (in Chinese) [百度学术]
MOSHREFZADEH A, FASANA A. The Autogram: an effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 105:294-318. [百度学术]
ANTONI J. Cyclic spectral analysis of rolling-element bearing signals: facts and fictions[J]. Journal of Sound and Vibration, 2007, 304(3/5):497-529. [百度学术]
ABBOUD D, ANTONI J, ELTABACH M, et al. Angle time cyclostationarity for the analysis of rolling element bearing vibrations[J]. Measurement, 2015, 75(7):29-39. [百度学术]
ANTONI J, XIN G, HAMZAOUI N. Fast computation of the spectral correlation[J]. Mechanical Systems and Signal Processing, 2017, 92:248-277. [百度学术]
唐贵基, 田甜, 庞彬. 基于总变差去噪和快速谱相关的滚动轴承故障诊断[J]. 振动与冲击, 2019,38(11):187-193. [百度学术]
TANG Guiji, TIAN Tian, PANG Bin. Rolling bearing fault diagnosis method based on total variation de-noising and fast spectral correlation[J]. Journal of Vibration and Shock, 2019,38(11):187-193. (in Chinese) [百度学术]
MIAO Y, ZHAO M, LIN J. Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition[J]. ISA transactions, 2018, 84(12):82-95. [百度学术]
张龙, 成俊良, 李兴林,等. 基于自适应频带冲击强度的滚动轴承故障量化评估[J]. 振动与冲击, 2018, 37(19):30-38. [百度学术]
ZHANG Long, CHENG Junliang, LI Xinglin, et al. Fault quantitative evaluation of rolling bearings based on shock value of selected frequency band[J]. Journal of Vibration and Shock, 2018, 37(19):30-38. (in Chinese) [百度学术]
王宏超, 陈进, 董广明. 基于谱相关密度组合切片能量的滚动轴承故障诊断研究[J]. 振动与冲击, 2015, 34(3):114-117. [百度学术]
WANG Hongchao, CHEN Jin, DONG Guangming. Fault diagnosis of rolling bearings based on slice energy spectral correlation density[J]. Journal of Vibration and Shock, 2015, 34(3):114-117. (in Chinese) [百度学术]
LEE J, QIU H, YU G,et al. ‘Bearing data set’ IMS[EB/OL]. [2020-10-20]. https:∥ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/#bearing [百度学术]