基于 MIGA 的结构模型修正及其应用

杨海峰, 韩 晖, 吴子燕

(西北工业大学力学与土木建筑学院 西安,710072)

摘要为了寻找到优化域内的全局最优解,获得更准确的结构有限元模型,提出将多岛遗传算法(MIGA)应用到模型修正中,以响应面替代模型简化有限元计算分析,以有限元理论分析模态与结构实测模态残差为目标优化函数。 在参数灵敏度分析的基础上,建立桥梁结构动力响应、单元弹性模量、密度以及截面面积的优化数学模型,采用 MI-GA 作为优化策略,对桥梁结构进行了动力测试和模型修正。结果表明,模型修正效果良好,可真实反映结构的动力 学特性,证明了该方法的有效性和可行性。

关键词 模型修正;多岛遗传算法;响应面法;目标优化;灵敏度分析 中图分类号 O327;U441;TB123

引 言

由于模型简化、材料及边界选取等误差,有限元 模型分析结构的静动力行为与实测结果相比有较大 出入。面向结构健康监测的动力学模型修正是新的 研究方向,初步已在航空航天等领域得到成功应用。 在桥梁健康监测系统中,模型修正处于"诊断"部分, 初始有限元模型误差易对传感器布置及桥梁评估维 修决策等造成误判;因此,良好的有限元模型对整个 监测系统具有重要作用。

有限元模型修正通常可转化为优化问题。基于 动力的模型修正分为两类:矩阵修改法和参数修改 法。Baruch等^[1-2]提出通过修改刚度和质量矩阵进 行模型修正,该方法理论上可行,但实际中,因难以 说明修正后矩阵元素的物理意义而应用较少; Friswell等^[3]研究了基于灵敏度分析的参数修正 法,它以结构物理、几何等参数为修正对象,物理意 义明确,但须多次迭代,优化过程进行多次有限元分 析,且因方法不同而修正效果各异,无法解决局部最 优解带来的误差,效率并非最优。Doebling^[4]总结了 模型修正及其在损伤探测方面的应用。Marwala^[5] 引入响应面方法和神经网络理论进行了结构模型修 正。任伟新等^[6]基于响应面法和结构静力响应进行 了模型修正。

鉴于以往结构模型修正中耗费机时的动力分析

和迭代计算,以及局部寻优的不足,笔者采用参数型 模型修正方法,对结构进行动力测试,以响应面函数 替代有限元建模,简化繁冗的有限元计算;以结构实 测与理论分析模态残差为目标函数,建立桥梁结构 动力响应、单元弹性模量、密度及截面面积的优化数 学模型,采用 MIGA 作为优化策略,完成有限元模 型修正。

1 多岛遗传算法(MIGA)

遗传算法是模拟自然界生物进化机制发展起来 的随机全局搜索和优化方法,它利用编码技术,作用 于称为染色体的数字串,模拟由这些串组成的群体 的进化过程^[7]。基本运算流程为编码、生成初始种 群、适应度评价检测、选择、交叉、变异和终止条件。 作为一种高效、全局、鲁棒性强的优化技术,在搜索 过程中自动获取和积累搜索空间知识,自适应地控 制搜索过程以求得最优解,具有极强的全局寻优能 力,可用于处理离散、连续等混合变量的复杂非线性 优化。

相比传统优化方法,遗传算法的处理对象非参 数本身,而是通过编码参数集获得的基因个体。它不 依赖梯度信息,通过模拟自然进化过程来搜索最优 解。将遗传算法用于结构模型修正中,可克服传统优 化方法如序列规划法等局部寻优带来误差的不足。 在传统遗传算法基础上发展起来的 MIGA,把每个

^{*} 国家自然科学基金资助项目(编号:50878184,50875212);西北工业大学研究生创业种子基金资助项目(编号:Z200929) 收稿日期:2011-04-16;修改稿收到日期:2011-05-31

种群的个体分成若干子群("岛"),然后在每个岛上 进行传统遗传算法所进行的选择、交叉和变异操作。 各岛定期进行"迁移"操作,将随机选择的一定数量 个体转移到别的岛上。与传统遗传算法相比,这种方 式维持了群体的多样性,可以有效抑制早熟并加快 收敛速度,提高了包含全局最优解的机会。

2 有限元模型修正技术

2.1 基本原理

有限元模型修正实际上属于动力学反问题。已 知激励和结构响应,通过系统辨识获得结构参数,以 此进行模型修正便可获得能良好反映实际结构的有 限元模型。

目前,较多的研究采用试验模态分析方法进行 模型修正。虽然仅识别出结构一些低阶不完备的模 态参数,但由于其准确、可靠,修正后的有限元模型 可准确地反映结构特性,用于后续的分析、计算。

2.2 修正参数的选择

影响结构响应的参数很多,不可能将全部参数 进行修正,修正参数过多易造成优化方程的病态。基 于灵敏度分析确定主要修正参数,而忽略次要参数, 不但简化了计算规模,也有效地达到修正目的。对于 一个简单的显式函数,其某参数的灵敏度分析可通 过直接求导来计算。

2.3 目标函数的构造

目前模型修正的主流方法是通过最小化试验数 据与分析结果的偏差以消除结构模型中的参数误 差^[8]。笔得采用试验模态与理论分析值间的残差构 造目标函数^[9],将动力学模型修正问题转化为有约 束的非线性最优化问题

$$\begin{cases} \min F(\theta) = \sum_{i=1}^{m} (f_i^{exp} - f_i)^2 \\ \text{s. t. } \theta_{low}^j \leqslant \theta^j \leqslant \theta_{up}^j \quad (j = 1, 2, \cdots, n) \end{cases}$$
(1)

其中: $F(\theta)$ 为试验与理论分析模态的误差平方和; f_i^{exp}, f_i 分别为第i阶实测与理论分析模态; θ_{up}^{i} 和 θ_{ow} 分别为修正参数的上、下限;m为模态频率阶次;n为参数个数。

2.4 响应面方法(RSM)

2.4.1 响应面函数

响应面法实质是用数学解析式来模拟结构近似

响应,常采用多项式的形式。含k个设计变量的二阶 多项式响应面函数为

$$f = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i=1}^{k-1} \sum_{j>i}^k \beta_{ij} x_i x_j + \epsilon$$

$$(2)$$

其中:f为结构响应; x_i, x_j 为输入变量; $\beta_0, \beta_i, \beta_{ii}, \beta_{ij}$ 分别为待定系数; ε 为拟合误差,服从均值为零的正态分布。

经过*m* 次动力时程分析,得到结构响应和设计 变量间的关系,也即得到了关于待定系数 β₀,β_i,β_{ii} β_{ij}的非齐次线性方程组,令每次试验的误差平方和 最小,通过最小二乘回归得到待定系数的无偏估计 从而得到结构响应的近似函数。

2.4.2 试验设计[10]

试验样本的选取关系到拟合响应面的精度。针 对有限元模型修正的特点,笔者采用中心复合设计 进行试验设计。对包含n个变量的试验,确定样本点 为2ⁿ+2n+1个,包括1个中心点;2ⁿ个象限点;2n 个轴线点。

2.4.3 适应性检验

响应面模型生成后,为保证其适应性,须采用多 重拟合系数R² 和修正多重拟合系数R_a²进行适应性 检验,要求其值均大于0.9

$$R^2 = \frac{\text{SSR}}{\text{SST}} \tag{3}$$

$$R_a^2 = 1 - (1 - R^2) \left(\frac{m - 1}{m - n}\right) \tag{4}$$

其中:SSR = $\beta^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{Y} - \frac{(\boldsymbol{l}^{\mathsf{T}} \boldsymbol{Y})^2}{m}$;SST = $\boldsymbol{Y}^{\mathsf{T}} \boldsymbol{Y} - \frac{(\boldsymbol{l}^{\mathsf{T}} \boldsymbol{Y})^2}{m}$ \boldsymbol{l} 为 $N \times 1$ 的单位向量。

2.5 有限元模型修正过程

在参数灵敏度分析的基础上,通过试验设计对 所建立的结构样本进行有限元分析,通过响应面替 代建模以预测结构近似响应。构建结构理论与实测 模态残差的目标函数,应用 MIGA 优化获得全局最 优解,即完成结构模型修正。本文算法的整体流程如 图1 所示。

3 桥梁结构有限元模型修正

Benchmark 模型为国际通用的桥梁问题研究模型。笔者对所在课题组设计制作的双跨桥梁模型结构进行动力测试,并修正了该桥的有限元模型。

图1 结构有限元模型修正算法流程图

3.1 桥梁模型简介

桥梁模型如图 2 所示。桥面宽 2.0 m,净跨 5.4 m,横向和纵向各两跨,桥面高 1.0 m。

图2 桥梁模型示意图(单位:mm)

全桥选用Q235B型钢,桥面梁和柱采用截面尺 寸为150 mm×150 mm×5 mm×5 mm的H型钢; 桥面横梁间固接,梁与柱用螺栓铰接,下部支座固接 于3 根纵向搁置的H型钢梁上(截面尺寸为200 mm ×200 mm×10 mm×7 mm)。为增大基础刚度,下 部3 根钢梁间选用4 根Q235B型角钢(截面尺寸为 80 mm×80 mm×5 mm×5 mm)连接,每跨左侧角 钢距左侧支座0.52 m,两角钢间距1.45 m。

3.2 初始有限元模型的建立

采用通用分析软件 ANSYS 建立初始有限元模型,进行动力分析。根据梁、柱的力学性能,采用了 梁、杆单元来建模,桥面梁、柱用 Beam188 单元模 拟。由于实际结构的梁、柱在纵向铰接,故在初始模 型结构调整中,采用耦合节点自由度的方式模拟梁 柱铰接。有限元模型共114 个节点、72 个单元及629 个自由度,如图 3 所示。

图 3 结构有限元模型

3.3 桥梁结构的环境振动试验

桥梁结构的动力试验采用环境激励技术完成。 试验中,激励由 JZ-20 激振器提供,振动信号由 YJ9A 型压电加速度传感器拾取并进行结构模态参 数识别。测试内容包括全桥竖、横和纵向的自振特 性。采用北京东方所研制的DASP 智能信号采集处 理分析系统进行信息提取。参数识别采用增强频域 分解法(EFDD),识别结果示于表1 和图4,并用模态 置信准则MAC 检验了理论分析与实测振型的相关 程度。模态置信准则如下

$$MAC_{j} = \frac{|\varphi_{aj}^{T}\varphi_{ej}|^{2}}{(\varphi_{aj}^{T}\varphi_{aj})(\varphi_{ej}^{T}\varphi_{ej})}$$
(5)

其中: q_{aj}, q_{ej}分别为理论分析与实测结构第 j 阶振型; MAC 值介于0 到1之间。

表1 结构有限元模型计算和实测模态比较

模 态	有限元计算 频率/Hz	振动实测 频率/Hz	阻 尼	相对 误差/%	MAC
1	5.77	6.16	1.79	6.36	0.98
2	17.96	14.40	1.02	-24.78	0.95
3	38.97	34.81	0.37	-11.94	0.79
4	41.43	43.76	1.05	5.32	0.80
5	53.39	52.39	0.42	-1.91	0.87

表2 各初始修正参数的1阶灵敏度

图4 结构模型振型图

3.4 对实测数据进行模型修正

影响构件刚度的主要因素是弹性模量及惯性 矩,且模型误差多集中在连接及边界处,笔者用梁单 元模拟支座刚度,通过改变弹性模量来控制支座的 约束刚度,因此首选桥面梁单元的弹性模量 θ_1 、密度 θ_2 、桥柱的弹性模量 θ_3 、密度 θ_4 及梁与柱的横截面积 θ_5 、条形基础的截面积 θ_6 进行灵敏度分析后确定修 正参数。表2 给出了结构前9 阶模态频率的1 阶灵敏 度信息。可以看出,至少有1 阶模态对参数 θ_1 , θ_2 , θ_4 , θ_5 和 θ_6 较敏感。为简便起见,取桥面梁弹性模量 (x_1)、梁柱密度(x_2)和条形基础截面积(x_3)为修正 参数。

根据图纸和规范,桥面梁的弹性模量取200 GPa,梁柱密度取7 850 kg/m³,基础梁截面积为

模态	θ_1	θ_{2}	θ_{3}	θ_{4}	θ_{5}	θ_{6}
	- 1	. 2	- 5	- 4	- 5	- 0
f_1	0.00	-0.04	0.03	0.84	-0.02	0.54
f_2	0.01	-0.04	0.03	0.81	0.00	0.58
f_3	0.00	0.00	0.11	0.83	0.00-	-0.55
f_4	0.00	0.15	0.03	0.95	0.19	0.19
f_5	0.04	0.01	0.00	0.99	0.12	0.08
f_6	0.03	0.03	0.00	1.00	0.03	0.03
f_7	0.10	0.20	0.00	0.86	0.31	0.33
f_8	0.00	0.32	0.02	0.64	0.60	0.34
f_9	0.26	0.37	0.00	0.57	0.42	0.53

0.046 6 m²。依工程经验,假设3个参数分别在 ±50%,±20%和±50%之间变化,进行中心复合试 验设计,需要对各修正参数用式(6)进行归一化,结 果见表3。

$$x_i = \xi_i - \frac{\xi_{\max} + \xi_{\min}}{2} / \frac{\xi_{\max} - \xi_{\min}}{2}$$
 (6)

3 个变量的试验设计包含 8 个象限点、6 个轴线 点和1 个中心点,共15 组试验。星点与中心点的距离 取 $\alpha = \sqrt[4]{2^{i}} \ge 1.0$,试验设计及分析结果见表 4, f_i 为 第*i* 阶模态。

表3 输入参数及其归一化

输入	参数	最小值	平均值	最大值	
桥面梁单元 弹性模量 ξ_1/GPa		100	200	300	
	x_1	-1	0	+1	
梁、柱密度 ξ_2	$/(kg \cdot m^{-3})$	6 280	7 850	9 420	
	x_2	-1	0	+1	
柱截面积	${m \xi}_3/{ m m}^2$	0.022 6	0.046 6	0.070 6	
	x_3	-1	0	+1	

表 4 试验分组及数值模拟结果

-	编号	x_1	x_2	x_3	$f_1/{ m Hz}$	$f_2/{ m Hz}$	$f_{\rm 3}/{\rm Hz}$		$f_9/$	Hz f	$_{10}/\mathrm{Hz}$
-	1	-1	-1	-1	5.42	17.03	38.98		103.	. 81 10)4.52
	2	+1	-1	-1	6.41	20.68	43.52		150.	. 50 15	5.43
	:	:	:	:	:	:	÷	:	:		÷
	15	0	0	0	5.77	17.96	38.97		110.	. 10 13	31.72
樟素	采用2 阶 5响应的近	·响应面函数 近似函数为	数进行替付	代建模,结构	勾前5 阶	$f_5 = 55.2$	$x^{2} + 8.24x$	$_{1}^{1} + 5.52$	$2x_2 - 9$	$.19x_3 - + 6.02$	$r_{1}r_{2} = -$
f_1	$f_1 = 5.83 + 0.63x_1 + 0.34x_2 - 1.03x_3 - 0.03x_3 - 0.000x_1 + 0.000x_2 - 0.000x_3 - $				-	0.71	$x_1 x_3 - 0.$	$64x_2x_3$	2.0003	1 0.020	(9
	$0.29x_1^2 - 0.14x_2^2 + 0.44x_3^2 + 0.10x_1x_2 - 0.00x_1x_2 - 0.00x_$				$x_1 x_2 -$	表:	5 前3阶频	页率的响应	面回归系	系数及拟合	ì系数
	$0.06x_1x_2$	$x_3 - 0.03x$	$c_2 x_3$		(7)	频率	$eta_{\scriptscriptstyle 0}$	eta_1	eta_2	$eta_{\scriptscriptstyle 3}$	R^2
f_2 :	=17.94 -	$+ 1.90x_1 -$	$-1.35x_2$ -	$-3.2x_{3}-$	-	1 阶	5.83	0.63	0.34	-1.03	0.988
	$0.72x_1^2$	$-1.41x_2$	$^{2} + 1.69x$	$c_{3}^{2} + 0.01$	$x_1 x_2 -$	2 阶	17.94	1.90	1.35	-3.20	0.999
	$0.17x_1x_1$	$x_3 - 0.04a$	$c_2 x_3$		(8)	3 阶	38.51	2.48	3.22	-6.96	0.990
	1										

表5显示,拟合系数均保持在0.9以上,说明所 拟合的响应面精度良好,可以作为该桥梁结构的有 限元替代模型。

图 5 3个设计变量对1阶频率回归响应面

采用MIGA 作为优化策略,按照式(1),以理论 和实测模态的残差构造目标函数。遗传算法参数取 为:子群数为10;子群个体数为10;进化代数为10;交 叉方式采用父代加权平均值产生子代,概率为0.8; 采用均匀变异方法,概率0.005;迁移率为0.5,迁移 间隔为5。采用单目标修正,取前5阶模态,忽略各阶 模态的差异性,各阶权值均为1。目标函数的优化收 敛曲线见图6。

模型修正前、后各参数值见表6。可见,桥面梁、 柱刚度和质量及基础梁均有一定变化。利用试验数 据修正后模态与实测值的比较见表7。图7给出了各 阶模态修正前后与实测值的相对误差对比。同时,采 用传统灵敏度方法对该有限元模型进行了修正,并 将修正后结果与本文修正结果作了比较,如图8 所示。

表6 修正前、后结构模型参数值比较

设 计 参 数	桥面梁弹 性模量 <i>x</i> 1/GPa	桥面梁、 柱密度 x ₂ /(kg•m ⁻³)	基础梁横 截面积 x_3/m^2
修正前	200	7 850	0.046 6
修正后	150	7 302	0.030 8

表7 修正后的模态参数与实测值比较

模态	实测		修正前		修正后			
	频率/Hz	计算频率/Hz	相对误差/%	MAC	计算频率/Hz	相对误差/%	MAC	
1	6.16	5.77	6.36	0.98	5.91	4.07	0.97	
2	14.40	17.96	-24.78	0.95	15.00	-4.20	0.95	
3	34.81	38.97	-11.94	0.79	36.20	-3.99	0.80	
4	43.76	41.43	5.32	0.80	43.27	1.11	0.81	
5	52.39	53.39	-1.91	0.87	50.50	3.60	0.83	

从修正结果可以看出,修正后模态与实测值符 合良好,误差均控制在5%以内,且各参数变化范围 符合工程要求,达到了有限元模型修正的效果。相比 传统灵敏度分析方法,其修正后除个别外,多数模态 基本控制在误差范围内,但收敛速度慢。本文方法在 优化域进行全局寻优,修正后模态更接近实测值,能 更好地对有限元模型进行修正。

4 结束语

结合响应面法和 MIGA 对桥梁结构模型进行 了修正。不同于传统修正方法,该方法通过灵敏度分 析确定修正参数,以响应面函数替代建模简化以往 繁冗的有限元分析,计算量小,且提高了模型修正的 效率。采用 MIGA 为优化策略,进全局寻优,避免局 部最优解引起的误差,结果更可靠,且收敛平稳,精 度较高。试验表明,用该方法进行修正后的模型,可 基本反映结构的实际工作状态,具有较高的工程 价值。

参考文献

- [1] Baruch M, Bar Itzhack I Y. Optimal weighted orthogonalization of measured model [J]. AIAA Journal, 1978, 16(4): 346-351.
- [2] Berman A, Nagy E J. Improvement of large analytical model using test data [J]. AIAA Journal, 1983, 21 (8): 1168-1173.
- [3] Friswell M I, Mottershead J E. Finite element model updating in structural dynamics [M]. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1995: 115-118.
- [4] Doebling S W, Farrar C R, Prime W B. A summary review of vibration-based damage identification meth-

ods[J]. Shock and Vibration Digest, 1998, 30(2) 91-105.

- [5] Marwala T. Finite element model updating using response surface method [C] // In Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. USA California: Palm Springs,2004: 5165-5173.
- [6] Ren Weixin, Fang Shengen, Deng Miaoyi, et al. Response surface based finite element model updating by using structural static responses[J]. Journal of Engineering Mechanics, ASCE, 2011,137(4):248-257.
- [7] 雷英杰,张善文,李续武,等. MATLAB 遗传算法工具
 箱及应用[M].西安:西安电子科技大学出版社, 2005:1-6.
- [8] 丁继锋,马兴瑞,韩增尧,等.结构动力学模型修正的 三步策略及其实践[J]. 航空学报,2010,31(3):546-552.
 Ding Jifeng, Ma Xingrui, Han Zengyao, et al. Three-

step model updating method dymamics and its application[J]. Acat Aeronaticaet Astronautica Sinica,2010, 31(3):546-552. (in Chinese)

- [9] Modak S V, Kundra T K, Nakra B C. Studies in dynamic design using updated models [J]. Journal of Sound and Vibration, 2005, 281(3-5):943-964.
- [10] 张伟. 结构可靠性理论与应用[M]. 北京:科学出版 社, 2008:31-34.

第一作者简介:杨海峰,男,1976年10 月生,博士。主要研究方向为复杂结构 健康监测与诊断。曾发表《基于自适应 概率神经网络的损伤模式识别研究》 (《振动与冲击》2008年第27卷第7期) 等论文。

E-mail:hfyang@nwpu.edu.cn