基于 EMD 复杂度与鉴别信息的磨削颤振预测

董新峰1, 张为民1,2, 姜 源1

(1. 同济大学机械与能源工程学院 上海,200092) (2. 同济大学中德学院 上海,200092)

摘要 为避免磨削加工中出现颤振,提出一种基于经验模式分解(empiracal mode decomposition,简称 EMD)复杂 度与鉴别信息的颤振预测方法。采用经验模式分解对磨削加工中滤波后的振动信号进行分解,获得振动信号的本 征特征函数;采用L-Z复杂度指标对本征特征函数进行复杂度分析,获得磨削颤振特征值;采用鉴别信息对复杂度 变化进行量化,通过鉴别信息对磨削加工颤振进行预测。在外圆磨床实验平台对该方法的有效性进行了验证,分别 采用变工件转速、变砂轮转速和变磨削厚度3种加工方式逼近颤振状态。分析结果表明,当磨削加工趋于颤振时对 应的鉴别信息值增大。实验结果通过鉴别信息的大小可以对磨削加工中的颤振进行预测。

关键词 磨削;颤振;经验模式分解;L-Z复杂度;鉴别信息 中图分类号 TG596

引 言

颤振主要是由于刀具与工件之间的自激振动引 起。在加工过程中,颤振会降低加工表面的加工质 量、加剧刀具磨损、产生过大噪声、降低加工效率和 加速机床破坏;因此,许多学者对加工过程中颤振预 测进行了研究。文献「1]采用小波包分解方法构造颤 振检测特征向量,采用支持向量机对颤振进行预测。 文献[2]通过隐马尔科夫模型对测量的振动信号进 行建模,完成了切削加工中的颤振预测。文献[3]采 用自适应滤波方法对铣削加工中的声音信号进行分 析,通过声音信号功率谱提取特征,采用模糊逻辑方 法对颤振进行预测。文献[4]采用非线性时间序列指 数自回归模型对深孔钻削中的颤振进行预测。文献 「5¬采用S变换获取振动信号特征值,采用模糊逻辑 方法对车削加工中的颤振进行预测。文献[6]采用小 波变换方法对颤振进行预测。文献[7]基于声发射信 号的功率谱采用神经网络方法对磨削颤振进行预 测。文献[8]采用熵和CIR(coarse-grained information rate)方法对外圆切入磨颤振预测进行研究。文 献[1-8]从不同角度对颤振进行预测,但这些方法属 于监督式学习方法,即模型的建立需要颤振特征值 对模型进行训练,当训练样本无法获得时,模型无法 进行建立。

笔者根据磨削加工中振动信号的非平稳、非线 性特征,提出一种基于 EMD 复杂度指标和鉴别信 息的非监督式颤振预测方法,并通过 3 种趋于颤振 的加工对该方法的有效性进行了验证。

1 理论方法

1.1 经验模式分解理论

在磨削加工中,由于运动部件的非线性特征使 加工过程中的振动信号呈非平稳、非线性特征,传统 的时域、频域分析方法不适于非线性、非平稳信号的 分析。Huang N. E^[9]提出一种处理非线性、非平稳信 号的方法——经验模式分解,它是一种基于数据本 身的分解,具有很好的自适应性。EMD 可以把复杂 的非平稳信号分解为有限个具有物理意义的本征特 征函数(intrinsic mode function,简写IMF)^[10],分解 的IMF 需满足两个条件:a. 各个 IMF 数据的极值点 (包括极大值和极小值)数目和过零点数目相同或相 差1个;b. 数据极大值包络与极小值包络的局部均 值为0^[11]。具体分解步骤如下^[12-13]:

1)提取原始信号X(t)的极大值和极小值,采用
 3次样条方法拟合极大值和极小值,形成上包络线
 h₁和下包络线 h₂,计算包络均值

$$M(t) = 1/2[h_1 + h_2] \tag{1}$$

[•] 国家科技重大专项资助项目(编号:2011 ZX04016-021) 收稿日期:2012-01-11;修改稿收到日期:2012-03-17

2) 计算C(t) = X(t) - M(t),如果C(t)不满足 IMF 的条件,将C(t)作为新的原始信号重复以上 分解

$$C_{1k} = C_{1(k-1)}(t) - M_{1k}(t)$$
(2)

若如C_{1k}满足IMF的条件,则视其为一个本征特征函数。

3) 计算残余函数 R(t)=X(t)-C_{1k},重复以上 步骤得到信号的多个本征特征函数,直到C_{1k}很小或 C_{1k}基本呈单调趋势时停止分解。

1.2 复杂度指标

复杂度指标在医学领域具有广泛的应用,其能 够通过少量的数据对非线性系统特证进行度量,主 要用来描述时间序列信号的复杂程度^[14-15]。目前,许 多复杂度指标(如CO复杂度、L-Z复杂度和语法复 杂度等)是基于文献[16]基础上扩展得到。L-Z复杂 度算法步骤如下。

1) 有限长时间序列的粗粒化:设有限长时间序 列 $X = (x_1, x_2, \dots, x_n),$ 对X求平均值,将大于平均值 的数 x_i ($i = 1, 2, \dots, n$)记为"1",小于或者等于平均 值的数 x_i 记为"0",此过程称为粗粒化操作。经过粗 粒化操作,时间序列X变为一个由("0","1")符号 组成的时间序列 $S = (s_1, s_2, \dots, s_n)$ 。

2) 在*S* 序列中选择一个子串*S*=(s_1, s_2, \dots, s_m), 在子串*S* 后添加一个符号Q= s_{m+1} 或者一个符号串Q= ($s_{m+1}, s_{m+2}, \dots, s_{m+k}$),得到一个包括"0","1"的序列 *SQ*=($s_1, s_2, \dots, s_m, s_{m+1}$)或者 *SQ*=(s_1, s_2, \dots, s_m , $s_{m+1}, s_{m+2}, \dots, s_m, s_{m+1}$)或者 *SQ*=(s_1, s_2, \dots, s_m)或 *SQ*_v=($s_1, s_2, \dots, s_m \dots s_{m+k-1}$),判断是否存在某个变量 $i,1 \leq i \leq m, \notin(s_{m+1}, s_{m+2}, \dots, s_{m+k}) = (s_i, \dots, s_{i+k-1})$ 。 如果存在某个 $i, \pi Q$ 为"复制",然后把Q 延长,重复上 面步骤,直到Q 不属于*SQ*_v的一个子串;当Q 不属于 *SQ*_v中的一个子串时,称Q 为"插入"。若"插入"时用 小数点"."标记在Q 后,然后把小数点"."前面的所有 符号看成*S* 重复以上步骤,直到序列结束。

3)通过步骤2得到一个由小数点"."分隔的时间序列,把时间序列的段数记为"复杂度"c(n)。

4)依照文献[16]知道复杂度指标按概率趋向 一个稳定的数值,即

$$\lim_{n \to \infty} c(n) = b(n) = \frac{n}{\log_2 n} \tag{3}$$

其中:b(n)为有限长时间序列S的渐进稳定值。

用b(n)对c(n)进行归一化,得到复杂度指标为

$$C_{LZ} = c(n)/b(n) \quad (0 \leqslant C_{LZ} \leqslant 1) \tag{4}$$

1.3 鉴别信息

鉴别信息也称交叉熵、相对熵、方向散度和 Kullback-Leibler 距离。鉴别信息是对两个概率分 布的一种度量,随机变量 X 在离散数据情况下的鉴 别信息^[17]描述为:设随机变量 X 可能出现的值为 (a_1,a_2,\dots,a_k) ,其中X 的概率分布(实际中,将某个 值出现的频率值近似代替该值概率值)与 H_1 和 H_2 这 2 种假设有关联。设在 H_1 状态时,X 的概率分 布为

$$\begin{bmatrix} X \\ p_1(x) \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_K \\ p_1(a_1) & p_1(a_2) & \cdots & p_1(a_K) \end{bmatrix}$$

$$\overline{A} H_2 \ \text{K} \overline{\Delta} \overline{B} \ \text{K} X \ \text{in } \overline{B} \overline{B} \overline{A} \overline{B}$$

$$\begin{bmatrix} X \\ p_2(x) \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_K \\ p_2(a_1) & p_2(a_2) & \cdots & p_2(a_K) \end{bmatrix}$$

设 H_1 成立时概率为 $p(H_1), H_2$ 成立时概率为 $p(H_2), 根据概率论中条件概率和全概率定理有$

$$p(H_1|a_k) = \frac{p(H_1)p_1(a_k)}{p(H_1)p_1(a_k) + p(H_2)p_2(a_k)}$$
$$p(H_2|a_k) = \frac{p(H_2)p_2(a_k)}{p(H_1)p_1(a_k) + p(H_2)p_2(a_k)}$$

根据H₁和H₂状态下X的概率分布可以得到

$$p_1(a_k) = p(a_k | H_1)$$

 $p_2(a_k) = p(a_k | H_2)$

由上式得到

$$\log \frac{p_1(a_k)}{p_2(a_k)} = \log \frac{p_1(H_1 \mid a_k)}{p_2(H_2 \mid a_k)} - \log \frac{p(H_1)}{p(H_2)}$$
(5)

定义在假设 H_1 时,式(5)的数学期望称为两个 概率分布 $\{p_1(x)\}$ 和 $\{p_2(x)\}$ 之间的鉴别信息

$$D(p_1, p_2) = \sum_{i=1}^{K} p_1(a_i) \log \frac{p_1(a_i)}{p_2(a_i)}$$
(6)

2 磨削实验与分析

本实验平台由斯来福临 K-C33 高精密数控万 能外圆磨床、45 号钢工件(硬度为HRC35,磨削长度 为 90 mm),AVANT MI-7008 数据采集仪,DY-TRAN 3263M8 三向加速度传感器组成。三向加速 度传感器分别安装在工件主轴和砂轮主轴附近(其 中砂轮为氧化铝基体型),如图1 所示。

采集振动信号时,K-C33 按照以下方式运行:

1) 变工件转速磨削。砂轮以 35 m/min 速度 旋转, 磨削 深度 为 0.01 mm, 砂轮 进给速度 为

500 mm/min,在以上3种磨削参数不变的情况下, 工件主轴分别以80,100,120和150 r/min速度旋转,测量工件主轴和砂轮主轴附件的加速度信号(采 样时间为50 s,采样频率为10 K/s)。

2) 变磨削深度磨削。砂轮以35 m/min 旋转,工件主轴以 150 r/min 旋转,砂轮进给速度为500 mm/min,在以上3种磨削参数不变的情况下,砂轮磨削深度分别为0.01,0.015和0.02 mm测量加速度信号。

3) 变砂轮转速磨削。工件以120 r/min 速度旋转,砂轮进给量为 500 mm/min,磨削深度为
0.015 mm,砂轮分别以20,25,30 和 35 m/min 速度旋转测量加速度信号。

图1 磨削加工过程

根据磨削加工颤振理论可以知道,在3种不同 的磨削加工中当对应的磨削参数增大时会引起磨削 颤振,在磨削试验中对以上观点进行了验证,即当单 独增加工件转速、砂轮转速以及磨削厚度到一定值 时,磨削实验中会发生颤振。采用趋于颤振的加工方 式验证该方法在颤振预测中的有效性是可行的。

2.1 变工件转速磨削颤振预测

在外圆磨削加工过程中,x方向为工件的误差 敏感方向,因此主要对变工件转速磨削时工件主轴 和砂轮主轴x方向的振动信号进行分析,其数据处 理顺序为:

 1)根据工件主轴和砂轮主轴的模态参数选取 研究频段,对振动信号进行频域滤波获得研究信号;

2)采用EMD方法对滤波后的振动信号进行分解,获得本征特征函数,采用L-Z复杂度指标计算本 征特征函数复杂度,获得颤振预测分析的特征值;

3)采用鉴别信息对特征值的变化进行量化,从 而对磨削加工过程中的颤振进行预测。 下面以变工件转速磨削时,工件主轴 *x* 方向的振动信号为对象来说明信号处理过程。

2.1.1 振动信号的频域滤波

磨削加工中产生的振动信号含有多种噪声信息,对颤振进行精确预测必须正确选择研究的频段。 根据颤振理论,磨削颤振频率发生在砂轮主轴系统 和工件主轴系统固有频率附近,通过模态测量获得 工件主轴和砂轮主轴1阶固有频率为300 Hz,选择 200~300 Hz 频段研究对象。采用频域滤波方法获 得滤波后的波形如图2 所示。

图 2 变工件转速磨削时工件主轴 x 方向滤波后的波形

2.1.2 滤波后信号的EMD

根据经验模式分解计算步骤可得到变工件转速 时振动信号的EMD,为了说明EMD数据处理过程 以变工件转速磨削、工件主轴以100 r/min 旋转时*x* 方向的振动信号为例进行EMD计算。

在理想情况下,工件主轴旋转一转测量的振动 信号能够反映磨削过程的全部信息,考虑随机因素 的影响,选择2转的振动信号为分析对象对其进行 EMD 分解(工件主轴每2转对应的时间为1.2 s,选 择前24 s 的振动数据为分析对象进行EMD 分析,共 20组,图3为其中一组)。图3为通过经验模式分解 方法获得的前2转振动信号的EMD 结果。

图3中,IMF₁~IMF₉经过重构后可得到原始滤 波信号,每一个本征特征函数具有特定的物理意义 即经过EMD分解的信号反应磨床主轴系统中不同 的振动模式,每一个IMF表示主轴系统内部运动部 件的振动模式。在磨削加工中如果能够获得主轴系 统内部不同运动部件的特征,就可以对磨削加工过 程中的颤振进行预测。

2.1.3 本质特征函数的复杂度计算

根据复杂度定义可以计算工件主轴以100 r/min 旋转时,每2转振动信号不同本征特征函数(共9个) 的复杂度。为了消除外界干扰的影响,把前20组振动 信号对应的本征特征函数的复杂度值进行平均得到 工件主轴以100 r/min 旋转时振动信号每个 IMF 复 杂度的平均值。按照以上计算得到工件不同转速每个 IMF 的平均复杂度,如表1 所示。变工件转速时砂轮 主轴在x 方向的复杂度值如表2 所示。

2.1.4 基于鉴别信息的特征值变化分析

根据鉴别信息定义选择表1,表2中80r/min 对应 的复杂度向量作为基准,记为 P_1 ;100,120和150r/min 对应的复杂度向量记为 P_2 , P_3 , P_4 。计算 P_1 , P_2 , P_3 , P_4 相 对于 P_1 的鉴别信息值,结果如表3和表4所示。

2.2 变磨削深度和砂轮转速颤振预测

根据数据处理步骤可得到变磨削深度和变砂轮 转速时工件主轴和砂轮主轴振动信号的复杂度和鉴 别信息值,如表5~表8所示。从表1、表2、表5、表6、 表9和表10可以看出:在3种不同的磨削加工中,当 对应的磨削参数增大时不同IMF复杂度向量会增 大;当3种不同的磨削趋于颤振时,磨削力振动频率 会发生变化,磨削力激发主轴系统中各部件发生振 动,使振动信号包含的高频成分增大,导致复杂度增 大。从表3、表4、表7、表8、表11和表12中可看出,当 磨削参数趋于颤振变化时对应的鉴别信息值变大;因 此,通过其变化可以对磨削加工中的颤振进行预测。

表1 变工件转速磨削时工件主轴x方向各个IMF的复杂度

工件转速/				不同IM	MF 的复杂	度			
$(\mathbf{r} \cdot \min^{-1})$	IMF_1	IMF_2	IMF_3	IMF_4	IMF_5	IMF_6	IMF_7	IMF_8	IMF_9
80	0.534 0	0.465 8	0.403 3	0.295 4	0.1931	0.113 6	0.073 8	0.034 1	0.0227
100	0.530 6	0.578 9	0.447 9	0.3377	0.206 7	0.124 0	0.068 9	0.048 2	0.0207
120	0.620 9	0.564 5	0.459 6	0.322 6	0.161 3	0.096 8	0.088 7	0.040 3	0.024 2
150	0.644 5	0.615 2	0.439 5	0.312 5	0.195 3	0.117 2	0.0684	0.048 8	0.024 2

表 2 变工件转速磨削时砂轮主轴 x 方向各个 IMF 的复杂度

工件转速/			不	同 IMF 的复杂	度		
$(r \cdot min^{-1})$	IMF_1	IMF_2	IMF_3	IMF_4	IMF_5	IMF_6	IMF_7
80	0.399 8	0.5277	0.367 8	0.271 8	0.143 9	0.095 9	0.048 0
100	0.687 6	0.475 6	0.305 7	0.251 8	0.141 9	0.087 9	0.048 0
120	0.703 6	0.511 7	0.367 8	0.255 8	0.159 9	0.095 9	0.048 0
150	0.751 5	0.4477	0.383 8	0.287 8	0.191 9	0.127 9	0.080 0

表 3 变工件转速磨削时工件主轴 x 方向的鉴别信息

$D(\boldsymbol{P}_1, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_2, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_3, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_4, \boldsymbol{P}_1)$
0	0.360 1	0.390 5	0.530 1

表4 变工件转速磨削时砂轮主轴 x 方向的鉴别信息

$D(\boldsymbol{P}_1, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_2, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_3, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_4, \boldsymbol{P}_1)$
0	0.343 3	0.5530	0.817 2

表5 变磨削深度时工件主轴 x 方向各个 IMF 的复杂度

磨削深度/				不同 IMF	的复杂度			
mm	IMF_1	IMF_2	IMF_3	IMF_4	IMF_5	IMF_6	IMF_7	IMF_8
0.010	0.488 3	0.556 6	0.439 5	0.3027	0.185 5	0.117 2	0.068 4	0.048 8
0.015	0.625 0	0.546 9	0.468 8	0.302 7	0.175 8	0.097 7	0.058 6	0.029 3
0.020	0.683 6	0.576 2	0.449 2	0.373 4	0.196 0	0.117 4	0.078 1	0.048 8

表6 变磨削深度时砂轮主轴 x 方向各个 IMF 的复杂度

磨削深度/				不同 IMF	的复杂度			
mm	IMF_1	IMF_2	IMF_3	IMF_4	IMF_5	IMF_{6}	IMF_7	IMF_8
0.010	0.429 7	0.507 8	0.390 6	0.263 7	0.175 8	0.097 7	0.078 1	0.048 8
0.015	0.546 9	0.546 9	0.410 2	0.273 4	0.156 3	0.087 9	0.068 4	0.039 1
0.020	0.673 8	0.556 6	0.419 9	0.273 4	0.166 0	0.107 4	0.058 6	0.029 3

表7 变磨削深度时工件主轴 x 方向的鉴别信息

表 8 变磨削深度时砂轮主轴 x 方向的鉴别信息

$D(\boldsymbol{P}_1, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_2, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_3, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_1, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_2, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_3, \boldsymbol{P}_1)$
0	0.343 3	0.553 0	0	0.178 4	0.518 6

表 9	变砂轮转速时工件主轴 x 方向各个 IMF	的复杂度
-----	-----------------------	------

砂轮转速/	砂轮转速/ 不同 IMF 的复杂度								
$(m \cdot min^{-1})$	IMF_1	IMF_2	IMF_3	IMF_4	IMF_5	IMF_6	IMF_7	IMF_8	
20	0.538 2	0.328 9	0.318 9	0.189 3	0.119 6	0.069 8	0.059 8	0.029 9	
25	0.607 8	0.468 0	0.348 5	0.108 9	0.109 3	0.109 6	0.069 8	0.039 9	
30	0.637 5	0.488 1	0.358 6	0.169 1	0.139 3	0.099 7	0.069 8	0.049 8	
35	0.657 4	0.498 3	0.378 6	0.179 1	0.149 4	0.0997	0.079 8	0.053 9	

表 10 变砂轮转速时砂轮主轴 x 方向各个 IMF 的复杂度

砂轮转速/		不同 IMF 的复杂度							
$(m \cdot min^{-1})$	IMF_1	IMF_2	IMF_3	IMF_4	IMF_5	IMF_6	IMF_7	IMF_8	
20	0.627 8	0.498 3	0.388 7	0.239 2	0.129 6	0.0897	0.039 9	0.0299 0.029 9	
25	0.6577	0.498 3	0.289 0	0.289 0	0.169 4	0.0897	0.069 8	0.039 9 0.029 9	
30	0.677 4	0.587 9	0.428 5	0.318 9	0.209 3	0.129 6	0.069 8	0.0598 0.0598	
35	0.697 8	0.608 1	0.418 6	0.289 0	0.369 4	0.1997	0.0797	0.0598 0.0699	

表11 变	砂轮转速时工作	件主轴 x 方向的	的鉴别信息
$D(\boldsymbol{P}_1, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_2, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_3, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_4, \boldsymbol{P}_1)$
0	0.391 9	0.601 0	0.746 1

3 结 论

1) 基于磨削加工中振动信号的非线性、非平稳

表 12 变碎	少轮转速时砂车	轮主轴 <i>x</i> 方向自	内鉴别信息
$D(\boldsymbol{P}_1, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_2, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_3, \boldsymbol{P}_1)$	$D(\boldsymbol{P}_4, \boldsymbol{P}_1)$
0	0.306 1	0.736 8	1.332 9

性的特征,提出一种磨削颤振预测方法,通过变工件 转速、变砂轮转速和变磨削厚度3种趋于颤振的加 工方式对该方法的有效性和可行性进行了验证。实 验结果表明,在3种加工过程中,当磨削参数趋于颤 振方向发展时,对应的鉴别信息值增加。

2)当磨削颤振发生时,通过本研究方法获得颤振阈值,在磨削过程中当鉴别信息接近颤振阈值说明加工中即将出现颤振,应采取进一步措施避免。确定精确的颤振阈值较为困难,还需要做进一步研究。

参考文献

- [1] Yao Zhehe, Mei Deqing, Chen Zichen. On-line chatter detection and identification based on wavelet and support vector machine[J]. Journal of Materials Processing Technology, 2010(210):713-719.
- [2] Mei D Q, Li X, Chen Z C. Prediction of cutting chatter based on hidden markov model[J]. Key Engineering Material, 2007(353-358): 2712-2715.
- [3] Bediaga I, Mu noa J, Hernandez J. An automatic spindle speed selection strategy to obtain stability in high-speed milling [J]. International Journal of Machine Tools and Manufacture, 2009(49):384-394.
- [4] Messaoud A, Weihs C. Monitoring a deep hole drilling process by nonlinear time series modeling[J]. Journal of Sound and Vibration, 2009(321):620-630.
- [5] Tansel I N, Wang X, Chen P, et al. Transformations in machining, part 2, evaluation of machining quality and detection of chatter in turning by using s-transformation [J]. International Journal of Machine Tools and Manufacture, 2006(46):43-50.
- [6] Gonzalez-Brambila O, Rubio E, Jauregui J C. Chattering detection in cylindrical grinding processes using the wavelet transform [J]. International Journal of Machine Tools and Manufacture, 2006 (46): 1934-1938.
- [7] Karpuschewski B, Wehmeier M, Inasaki I. Grinding monitoring system based on power and acoustic emission sensors[J]. Annals of the International Academy for Production Engineering, 2000,49(1):235-240.
- [8] Gradisek J, Baus A, Govekar E, et al. Automatic chatter detection in grinding[J]. International Journal of Machine Tool and Manufacture, 2003:1397-1403.
- [9] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal of London Series A,1998(454): 903-995.
- [10] 李宏坤,周帅,朱泓,等. 基于经验模式分解的全信息故障 识别方法 [J]. 振动、测试与诊断,2011,31(1):20-22.
 Li Hongkun, Zhou Shuai, Zhu Hong, et al. Rotor fault classification using empirical mode decomposition based holospectrum [J]. Journal of Vibration, Mea-

surement and Diagnosis, 2011, 31(1): 20-22. (in Chinese)

[11] 张志鹏,王伟平,郭明威.基于小波-中值降噪的经验模式分解与应用[J].振动、测试与诊断,2011,31(6) 779-782.

Zhang Zhipeng, Wang Weiping, Guo Mingwei. EMD and it application based on wavelet-median synthesis de-noising [J]. Journal of Vibration, Measurement and Diagnosis,2011,31(6):779-782. (in Chinese)

- [12] 胥保春,袁慎芳. IMF 筛选停止条件的分析及新的停止条件[J]. 振动、测试与诊断,2011,31(3):348-353.
 Xu Baochun, Yuan Shenfang. IMF stopping criterion of EMD and new stopping criterion[J]. Journal of Vibration, Measurement and Diagnosis, 2011, 31(3) 348-353. (in Chinese)
- [13] 冷军发,荆双喜,陈东海.基于EMD 与同态滤波解调的 矿用齿轮箱故障诊断[J].振动、测试与诊断,2011,31 (4):435-438.
 Leng Junfa, Jing Shuangxi, Chen Donghai. Fault diagnosis of mine gearbox based on EMD and homomorphic filtering demodulation[J]. Journal of Vibration, Measurement and Diagnosis, 2011, 31 (4): 435-438.
- [14] Manuela F, Maria G S, Giovanni M. Complexity analysis of the fetal heart rate variability: early identification of severe intrauterine growth-restricted fetuses [J]. Medical and Biological Engineering and Computing, 2009, 47(9):911-919.
- [15] Carlos G, Roberto H. Complexity analysis of the magnetoencephalogram background activity in Alzheimer's disease patients[J]. Medical Engineering and Physics, 2006,28(9):851-859.
- [16] Lempel A, Ziv J. On the complexity of finite sequences[J]. Infromation Theory, 1976, 22(1):75-81.
- [17] 李晔,崔慧娟,唐昆. 基于能量和鉴别信息的语音端点 检测算法[J]. 清华大学学报:自然科学版,2006,46 (7):1271-1273.
 Li Ye, Cui Huijuan, Tang Kun. Voice activity detection algorithm based on energy and discrimination entyopy[J]. Journal of Tsinghua University: Edition of Science and Technology, 2006, 46(7):1271-1273. (in Chinese)

(in Chinese)

第一作者简介:董新峰,男,1985年10月 生,博士研究生。主要研究方向为机械加 工切削稳定性和机械故障诊断。 E-mail:laile_sd@163.com