基于 Wilson-θ 算法的动载荷识别及影响因素

朱广荣1,2, 陈国平1, 张 方1, 陈英华1

(1. 南京航空航天大学机械结构力学及控制国家重点实验室 南京,210016)(2. 上海飞机设计研究院 上海,200232)

摘要 基于结构动力学正问题 Wilson-θ 算法的基本理论,推导了时域逆问题动载荷识别的改进算法,给出了算法的 基本步骤和递推过程,同时将动载荷识别模型引入到模态空间,利用模态叠加实现多自由度系统的动载荷识别。仿真 分析表明,该方法具有较高的识别精度和一定的抗噪声干扰能力,为动载荷时域识别方法提供了一种新的思路。

关键词 动载荷识别;结构动力学;振动模态;动力学模型;数值算法 中图分类号 TB122;TN911

引 言

动载荷识别技术是根据已知系统的动态特性和 实测的动力响应来识别结构所受的激励载荷。由于 航空结构上载荷类型的复杂性、测量条件和位置不 易确定性等因素的制约,通过间接测量结构动响应 来实现动载荷识别具有重要的工程意义。动载荷识 别技术主要分为时域识别和频域识别两大类。频域 法发展较早,理论和计算方法较为成熟,应用也很广 泛。动载荷时域识别由于数值计算误差因素导致理 论体系仍不完善,更为突出的是方程系数矩阵的病 态问题和随机噪声问题,给识别出来的载荷带来较 大的误差[1-2]。时域法的研究发展较晚,先后提出了 一些识别方法,如:级数系数平衡法、逆系统辨识法、 逆系统正解法,离散相似法以及基于广域正交域的 识别方法[3-11]。仿真计算和试验表明,这些方法具有 一定的可行性和有效性;但对于时域识别方法的算 法累积误差问题有待进一步研究。

结构动力学中时域动力学数值分析的累积误差 一直是研究的热点问题。随着计算机硬件技术的发 展和Wilson-θ算法的提出,动力学正问题的求解获 得了良好结果,但对结构动力学的第2类逆问题仍 没有系统的解决方案。文献[7]中Wilson-θ算法提 出了动载荷时域算法的初步思路。笔者基于这种算 法,研究和改善了动载荷识别算法的计算累积误差 问题,对一些主要参数选取进行研究并取得进展。

1 Wilson-θ 算法

Wilson- θ 算法为线性加速度法的扩展,在 $t \sim t + \theta \Delta t$ ($\theta > 1$)的时间区间内利用线性加速度假设并求解系统的动力学方程。

对于一个结构离散成多自由度的系统,动力学 平衡方程为

$$\boldsymbol{M}\ddot{\boldsymbol{x}}(t) + \boldsymbol{C}\dot{\boldsymbol{x}}(t) + \boldsymbol{K}\boldsymbol{x}(t) = \boldsymbol{f}(t) \qquad (1)$$

假设外力在 $t \sim t + \theta \Delta t$ 区间内线性变化

 $f(t + \theta \Delta t) = f(t) + \theta(f(t + \Delta t) - f(t))$ (2)

则可以列出在t+θΔt 时刻的系统动力学方程为

$$\mathbf{K}\mathbf{x}(t+\theta\Delta t) = \mathbf{f}(t+\theta\Delta t) \tag{3}$$

等效刚度为

$$\hat{\mathbf{K}} = \mathbf{K} + \frac{6}{(\theta \Delta t)^2} \mathbf{M} + \frac{3}{\theta \Delta t} \mathbf{C}$$
(4)

通过*t*时刻的位移*x*(*t*)、速度*x*(*t*)、加速度*x*(*t*)、 力*f*(*t*)和*t*+ Δt 的*f*(*t*+ Δt)可以解出*x*(*t*+ $\theta \Delta t$),得到 *x*(*t*+ $\theta \Delta t$)和*x*(*t*+ $\theta \Delta t$)。

当取 θ >1.37时,Wilson- θ 算法是无条件稳定的,一般取 θ =1.4。Wilson- θ 算法求解结构响应的优势在于选择适当 θ 常数的情况下,取任意计算时间计算步长,结果都是绝对收敛,这解决了一般数值积分方法在计算精度与计算时间上的矛盾。Wilson- θ 算法在计算积分时的绝对收敛性可以用于载荷识别的时域方法中,来解决识别结果随时间变长而发散的问题。

中央高校基本科研业务费专项资金资助项目(编号:NS2012080);南京航空航天大学引进人才科研启动经费资助项目 (编号:1001-YAH10033)
 收稿日期:2011-05-26;修改稿收到日期:2011-12-30

基于 Wilson-0 算法的载荷识别时域 2 方法

基于 Wilson- θ 算法,应用结构动力学逆推该算 法,得到载荷识别的计算模型。由式(3)可得

$$\hat{\mathbf{K}}\mathbf{x}(t+\theta\Delta t) = \hat{\mathbf{f}}(t+\theta\Delta t)$$
(5)

$$\pm \mathbf{\hat{f}}(t+\theta\Delta t) = \mathbf{f}(t) + \theta(\mathbf{f}(t+\Delta t) - f(t))_{\circ}$$

每一个微小的载荷步内可视为线弹性问题,根 据叠加原理,即

$$\mathbf{x}(t+\theta\Delta t) = \mathbf{x}'(t+\theta\Delta t) + \mathbf{x}''(t+\theta\Delta t) \quad (6)$$

为了求 $f(t+\theta\Delta t)$,在节点上单独施加单位节点 动载荷 $\overline{F}^{i}(t+\theta\Delta t)$,则有

$$f^{i}(t + \theta \Delta t) = \lambda^{i}_{t+\theta \Delta t} \overline{F}^{i}(t + \theta \Delta t)$$

(*i* = 1, 2, ..., *n*) (7)

其中:n为结构上动载荷的自由度数; $f^i(t+\theta\Delta t)$ 为 $t + \theta \Delta t$ 时刻在第*i*个节点处施加的动力载荷; $\lambda_{i+\theta \Delta}$ 为 载荷系数。

由于 $\overline{F}(t+\theta\Delta t)$ 为已知的单位载荷,求动载荷 $f^{i}(t+\theta\Delta t)$ 变为求载荷系数 $\lambda^{i}_{t+\theta\Delta t}$ 的问题。

设有m个自由度测点,若已经测出其加速度响 应,根据Wilson- θ 算法,可以求出这m个已知测点在 $t + \theta \Delta t$ 时刻的位移 $x^{k}(t + \theta \Delta t)(k = 1, 2, \dots, n)$, 进而 得到

$$x^{k}(t + \theta\Delta t) - (x''(t + \theta\Delta t))^{k} =$$

$$(x'(t + \theta\Delta t))^{k} = \sum_{i=1}^{n} (\lambda^{i}_{t+\theta\Delta t}(d^{i}(t + \theta\Delta t))^{k})$$

$$(k = 1, 2, \cdots, n)$$
(8)

式(8)为具有 n 个未知数 $\lambda_{i+\theta \Delta t}^{i}(i=1,2,\dots,n)$ 的 m 个方程组成的线性方程组,可以写为

$$\begin{cases} (x'_{t+\theta\Delta t})^{1} \\ (x'_{t+\theta\Delta t})^{2} \\ \vdots \\ (x'_{t+\theta\Delta t})^{m} \end{cases} = \\ \begin{bmatrix} (d_{t+\theta\Delta t}^{1})^{1} & (d_{t+\theta\Delta t}^{2})^{1} & \cdots & (d_{t+\theta\Delta t}^{n})^{1} \\ (d_{t+\theta\Delta t}^{1})^{2} & (d_{t+\theta\Delta t}^{2})^{2} & \cdots & (d_{t+\theta\Delta t}^{n})^{2} \\ \vdots & \vdots & \vdots & \vdots \\ (d_{t+\theta\Delta t}^{1})^{m} & (d_{t+\theta\Delta t}^{2})^{m} & \cdots & (d_{t+\theta\Delta t}^{n})^{m} \end{bmatrix} \begin{bmatrix} \lambda_{t+\theta\Delta t}^{1} \\ \lambda_{t+\theta\Delta t}^{2} \\ \vdots \\ \lambda_{t+\theta\Delta t}^{n} \end{bmatrix}$$

$$(9)$$

简写为

$$A_{t+\theta\Delta t} \lambda_{t+\theta\Delta t} = x'_{t+\theta\Delta t}$$
(10)

根据上述分析,对于载荷识别过程中的每一步, $A_{t+\theta\Delta t}$ 为已知,且 $A_{t+\theta\Delta t}$ 实际为系数柔度阵的一部分, 仅考虑线弹性结构, $A_{t+\theta\lambda}$ 不随时间变化,由式(10) 可解出 $\{x'\}_{t+\theta \Delta}$,对式(10)的求解讨论如下:

1) 当*m*<*n* 时,测点数小于待识别的未知力数 不能得到惟一解,无法识别;

2) 当m = n时,可以求得 $\lambda_{t+\theta\Delta t}$ 的一组惟一解。

3) 当m > n 时,对 $A_{t+\theta \Delta t}$ 求广义逆,可以求得一组 最小二乘解。

求出 $\lambda_{t+\theta\Delta t}$ 后,可以求出 $t+\theta\Delta t$ 时刻的动载荷值 $\overline{F}^{i}(t+\theta\Delta t)$,由于上一步的载荷 $\overline{F}^{i}(t)$ 已知,故可以识 别出下一载荷步的载荷为

> $F^{i}(t + \Delta t) = (F^{i}_{t+\theta \wedge t} - F^{i}_{t})/\theta + F^{i}_{t}$ (11)

基于 Wilson-0 算法的载荷识别模态 3 方法

单自由度有阻尼系统的受迫振动方程为

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f(t)$$
 (12)

将时间点离散t1~tN,在t1时刻作用一个单位的 脉冲载荷,用Wilson- θ 算法求得加速度响应h(t),则 真实载荷 $f(t_1)$ 可以看作是作用一个幅值为 $f(t_1)$ 的 脉冲载荷,同理,其他各个时刻点可以线性叠加,关 系如下

$$\begin{cases} \ddot{x}(t_1) = f(t_1)h(\Delta t) \\ \ddot{x}(t_2) = f(t_1)h(2\Delta t) + f(t_2)h(\Delta t) \\ \vdots \\ \ddot{x}(t_N) = \sum_{i=1}^N f(t_i)h(N\Delta t) \end{cases}$$
(13)
基于以上N个线性方程组,得到矩阵

 $(\ddot{x}(t_1))$

$$\begin{vmatrix} \dot{x}(t_{2}) \\ \vdots \\ \dot{x}(t_{n}) \end{vmatrix} = \begin{bmatrix} 4(\Delta t) \\ h(2\Delta t) & h(\Delta t) \\ \vdots & \vdots & \ddots \\ h(n\Delta t) & h((n-1)\Delta t) & \cdots & h(\Delta t) \end{bmatrix} \begin{bmatrix} f(t_{1}) \\ f(t_{2}) \\ \vdots \\ f(t_{n}) \end{bmatrix}$$
(14)

简写为 $\ddot{u}(t) = Hf(t)$

根据已知测点的加速度响应u(t)可以对矩阵求 逆得到f(t)。

对于多自由度系统运动方程 $M\ddot{x}(t) + C\dot{x}(t) +$ $\mathbf{K}\mathbf{x}(t) = \mathbf{F}(t)$

令
$$\mathbf{x}(t) = \Phi \mathbf{q}(t)$$
,对其解耦得到
 $M_r \ddot{\mathbf{q}}_r(t) + C_r \dot{q}_r(t) + K_r q_r(t) = F_r(t)$
 $(r = 1, 2, \dots, N)$ (15)

其中: $F_r(t) = \Phi_r^T F(t)$

解耦后的方程为各阶单自由度

$$\ddot{\boldsymbol{q}}_{r}(t) = \boldsymbol{H}_{r} \boldsymbol{\Phi}_{r}^{\mathrm{T}} \boldsymbol{F}(t)$$
(16)
$$\ddot{\boldsymbol{x}}(t) = \sum_{r=1}^{N} \boldsymbol{\Phi}_{r} \ddot{\boldsymbol{q}}_{r}(t) = \sum_{r=1}^{N} \boldsymbol{\Phi}_{r} \boldsymbol{H}_{r} \boldsymbol{\Phi}_{r}^{\mathrm{T}} \boldsymbol{F}(t)$$
(17)

其中:H,为第r阶单自由度上作用单位脉冲载荷形成的矩阵,求解式(17)可以得到F(t)动载荷。

4 仿真计算分析

算例1 三自由度弹簧质量块系统 $m_1 = m_2 = m_3 = 1 \text{ kg}, k_1 = k_2 = k_3 = 2.5 \text{ kN/m}, C = 0.2 M + 0.2 K, 在第3 自由度加载 <math>f(t) = 100 \sin(4\pi t)$ 简谐激励, 在第2 自由度上测的加速度响应, 识别的动载荷如图1 所示, 加入5%噪声后的识别效果如图2 所示。可以看出, 识别的效果很好, 发散的速度很慢, 抗噪性能好。

图 2 加入 5% 噪声后的识别效果图

算例2 长度为1m,截面尺寸为0.05m× 0.005m的两端简支矩形截面梁,弹性模量为72× 10⁹N/m²,材料密度为2700kg/m³,模型如图3所示,有限元划分10个单元,各阶阻尼比取0.02,在第 4 单元节点处加载正弦激励 *f*(*t*)=100sin(4π*t*),用 测得的第5节点加速度响应来识别载荷。

取前6阶模态,图4为理论值和该方法识别的结

果对比,图5为与传统时域方法识别的效果对比。

可以看出,短时间内识别效果较好,发散速度 慢,但随时间的增大还是出现了发散。以上算例验证 了该时域识别方法具有较好的稳定性、精确性和抗 噪性,可以有效识别未知载荷。

5 参数对识别效果的影响

时域载荷识别的效果与很多参数有关,以两端 简支梁为例,探讨各种参数对识别误差和发散速度 的影响。设定一个值 e 反应真实力与识别力的发散 速度,因为发散存在于每一个步长里,所以定义 e 为 一个周期内平均取 N 个点、计算每个点的识别力与 理论值的绝对误差,取平均值再比上理论值的最大 幅值,数学表达式为

$$e(N) = \frac{1}{A} \sum_{i=1}^{N} (|p(i\Delta t) - f(i\Delta t)|)$$

(i = T/N\Delta t) (18)

5.1 阻尼

设步长为 0.001 s, θ =1.4,改变各阶阻尼比得 到e(1)的值如表1 所示。表1 中数据表明,改变阻尼 比对e 值的影响很小。

5.2 时间步长

设定各阶阻尼比为0.02,*θ*=1.4,改变步长得到 *e*(2)的值如表2 所示。从表2 可知,步长对识别精度 和发散速度有较大的影响,理论上步长越小,识别的 结果越接近理论值,但对计算机和计算时间要求越 高,当步长增大到一定程度时,识别的结果出现发 散、无法识别;因此在计算机能力允许的情况下,尽 量减小步长可以使结果逼近精确值。

5.3 θ值

设定各阶阻尼比为 0.02,时间步长为 0.001 s 改变 θ 值,得到e(3)的值如表3 所示。可见, θ 值等于 1.365 左右为平衡点,当小于这个值时,该方法识别 结果发散非常快,当大于这个值,识别的效果基本变 化不大,用Wilson- θ 算法求解时一般取 θ 为 1.4。

表1 阻尼比与相应e值对照表

阻尼比	0.0	0.01	0.03	0.05	0.1	0.5	0.8	1.0
<i>e</i> (1)	0.061 5	0.062 3	0.063 0	0.063 3	0.0637	0.066 0	0.0677	0.068 9

表 2 时间步长与相应 e 值对照表

步长	0.000 1	0.000 5	0.001	0.002	0.003	0.005	0.01	0.05
e(2)	0.001 5	0.016 2	0.0627	0.250 1	0.556 9	1.581 8	6.192 2	128.967 5

表3 θ 值与相应e值对照表

θ值	1.35	1.36	1.360 5	1.361	1.365	1.4	2.0	10.0
e(3)	1.111 3×10^{12}	1.078 7	0.280 5	0.075 4	0.062 3	0.062 7	0.063 3	0.063 3

6 结束语

基于Wilson-θ的动载荷时域方法的识别精度和 稳定性均优于传统的时域识别方法;基于Wilson-θ 的动载荷时域方法仍无法解决识别过程无条件稳定 性问题,但相对传统的时域识别方法有明显改善;系 统阻尼、时间步长和θ值的选取对动载荷识别效果 有影响。

参考文献

- [1] 唐秀近. 时域动载荷识别的精度问题方法[J]. 大连理 工大学学报,1990,30(1):31-37.
 Tang Xiujin. Precision problems of dynamic load identification in time domain[J]. Journal of Dalian Univer-
- [2] 徐梅,张方.分布动载荷识别的抗噪处理[J].振动、测试与诊断,2009,29(4):470-473.

sity of Technilogy, 1990, 30(1): 31-37. (in Chinese)

Xu Mei, Zhang Fang. Anti-noise study on distributed dynamic load identification[J]. Journal of Vibration, Measurement & Diagnosis, 2009,29(4):470-473. (in Chinese)

[3] 赵凤遥,张运良,张根全.动载荷的时域识别方法及其 应用[J].水电能源科学,2005,23(1):8-11.

Zhao Fengyao, Zhang Yunliang, Zhang Genquan. Method and application of dynamic load identification in time domain [J]. Water Resources and Power, 2005,23(1):8-11. (in Chinese)

- [4] Haywood J, Coverley P T, Staszewski W J, et al. An automatic impact for a composite panel employing smart sensor technology[J]. Smart Material and Structures, 2005, 14(1): 265-271.
- [5] 严刚,周丽.加筋复合材料结构的冲击载荷识别[J].航空学报,2008,29(5):1150-1156.
 Yan Gang, Zhou Li. Impact load identification for stiffened composite structure[J]. Acta Aeronautica et Astronautica Sinica,2008, 29(5):1150-1156. (in Chinese)
- [6] Choi K, Chang F K. Identification of impact force and location using distributed sensors [J]. American Institute of Aeronautics and Astronautics Journal, 1996, 34 (1):136-142.

- [7] 赵凤遥,张宝霞,张根全.基于 Wilson-θ法的动载荷识别[J].河南科学,2009,27(10):1243-1246.
 Zhao Fengyao, Zhang Baoxia, Zhang Genquan. Dynamic load identification based on Wilson-θ method [J]. Henan Science, 2009, 27 (10): 1243-1246. (in Chinese)
- [8] Huang Lei, Long Teng, Wu Shunjun. Source enumeration for high-resolution array processing using improved Ger-schgorin radii without Eigen decomposition [J]. IEEE Transactions on Signal Processing, 2008,56 (12):5916-5925.
- [9] 张运良,林皋,王永学,等.一种改进动态载荷时域识别 方法[J]. 计算力学学报,2004,21(2):209-215.
 Zhang Yunliang, Lin Gao, Wang Yongxue, et al. An improved method of dynamic load identification in time domain [J]. Chinese Journal of Computational Me-

chanics, 2004,21(2):209-215. (in Chinese)

- [10] 张方,秦远田,邓吉宏.复杂分布动载荷识别技术研究
 [J].振动工程学报,2006,19(1):81-85.
 Zhang Fang, Qin Yuantian, Deng Jihong. Research of identification technology of dynamic load distributed on the structure [J]. Journal of Vibration Engineer-
- ing,2006,19(1):81-85. (in Chinese) [11] 陈文. 基于灵敏度与模拟退火方法的模型修正及软件 二次开发[D]. 南京:南京航空航天大学,2008.

第一作者简介:朱广荣,男,1962年3月 生,研究员。主要研究方向为飞机结构强 度。曾发表《大型飞机三维空间噪声的主 动控制研究》(《振动工程学报》2012年 第25卷第4期)等论文。

E-mail:zhuguangrong@comac.cc

《振动、测试与诊断》2010年影响因子

根据中国科学技术信息研究所《2011年版中国科技期刊引证报告(核心版)》最新公布,《振动、测试与诊断》2010年影响因子为0.663,在29种航空、航天科学技术类期刊中排名第一。在收录的1998种中国科技核 心期刊中(不含港澳台地区),综合评价排名为232名。在此,编辑部衷心感谢广大读者、作者和审稿人对本刊的一贯支持与关怀!

	影响因子		피성	影响因子	
刊名	数值	排名	刊名	数值	排名
振动、测试与诊断	0.663	1	中国空间科学技术	0.291	15
航空学报	0.599	2	测控技术	0.290	16
宇航学报	0.582	3	航天返回与遥感	0.283	17
CHINESE JOURNAL OF AERO-	0 545	4	空气动力学学报	0.266	18
NAUTICS	0. 343		强度与环境	0.265	19
航空动力学报	0.428	5	航空制造技术	0.250	20
计算机测量与控制	0.428	6	航天控制	0.223	21
电光与控制	0.409	7	飞行力学	0.211	22
推进技术	0.366	8	导弹与航天运载技术	0.171	23
北京航空航天大学学报	0.354	9	中国民航大学学报	0.163	24
固体火箭技术	0.349	10	航空精密制造技术	0.160	25
航天器环境工程	0.329	11	航空计算技术	0.137	26
航天器工程	0.321	12	飞行器测控学报	0.108	27
实验流体力学	0.310	13	宇航计测技术	0.090	28
南京航空航天大学学报	0.294	14	南昌航空大学学报自然科学版	0.070	29

表1 2010年航空、航天科学技术类期刊影响因子

713

(数据摘自中国科学技术信息研究所《2011年版中国科技期刊引证报告(核心版)》,科学技术文献出版社)