Journal of Vibration, Measurement & Diagnosis

基于附加质量的试验模态振型质量归一化

林贤坤1,2, 覃柏英3, 张令弥2, 郭勤涛4

(1. 广西工学院汽车与交通学院 柳州,545006) (2. 南京航空航天大学振动工程研究所 南京,210016)
 (3. 广西工学院理学院 柳州,545006) (4. 南京航空航天大学机电学院 南京,210016)

摘要 针对桥梁结构试验模态振型的质量归一化,探讨了基于附加质量的试验模态振型质量归一化法,给出它的4 种方法。以通扬运河大桥和张家港河大桥的有限元模型为对象,对4种方法计算质量归一化因子的精度,以及质量 块的数量和质量、传感器数量、模态振型误差、质量块质量的误差对精度的影响进行了仿真研究。仿真结果说明了 基于附加质量的试验模态振型质量归一化法的可行性和可靠性,在实际工程应用中可实现桥梁各阶试验模态振型 较高精度的质量归一化。

关键词 桥梁结构;运行模态分析;试验模态振型;附加质量;质量归一化;状态评估 中图分类号 U447

引 言

随着传感器、采集系统和计算机等技术的发展, 试验模态分析技术也得到了快速发展。在20世纪90 年代,出现了仅有输出响应的运行模态分析技术,该 技术仅用多点响应测量数据即可识别出桥梁的模态 参数^[1-4]。虽然该技术得到了快速的发展,但还存在 许多问题,其中之一是试验模态振型的质量归一化 问题^[5]。采用运行模态分析技术对桥梁实施环境激 励或交通激励的运行模态分析时,激励力的信息未 知,模态参数的识别是仅有输出的系统识别;因此, 获悉的各阶试验模态振型未质量归一化。

近年来,研究人员提出了一些桥梁试验模态振 型的质量归一化方法^[5-7],通过对桥梁实施运行模态 分析获得其试验模态参数后,再在一些已知试验振 型的点上添加质量块实施运行模态分析,从而实现 试验模态振型质量的归一化。这类方法可称为基于 附加质量的试验模态振型质量归一化法。

笔者提出了基于运行模态分析的模态挠度法, 并将其应用于桥梁状态评估,提出了基于有限元模 型的质量归一化法,即借助桥梁精确的有限元模型 对试验模态振型质量归一化^[8]。虽然该方法在实际 应用中可行和有效,但是建立和修正桥梁的精确有 限元模型还受人为因素的影响;因此,所求的质量归 一化因子受桥梁的有限元模型影响较大。随着运行 模态分析技术及试验模态参数在桥梁结构的健康监 测、状态评估和损伤识别中日益广泛的应用^[9-13],针 对桥梁结构试验模态振型的质量归一化问题,寻找 一种较精确的方法具有重要意义和价值。

1 方法的推导

设桥梁的质量阵*M*、刚度阵*K*、模态频率 λ_1 和振型 ϕ_1 满足*K* $\phi_1 = \lambda_1^2 M \phi_1$,若质量阵*M*有微小的改变量 ΔM ,对应的模态频率 λ_2 和振型 ϕ_2 满足 *K* $\phi_2 = \lambda_2^2 M + \Delta M \phi_2$,从而有

 $M(\lambda_1^2 \phi_1 - \lambda_2^2 \phi_2) = \lambda_2^2 \Delta M \phi_2 + K(\phi_1 - \phi_2)$ (1) 设 ϕ_2 相对 ϕ_1 有改变量 $\Delta \phi$,即 $\phi_2 = \phi_1 + \Delta \phi$,则

 $(\lambda_1^2 - \lambda_2^2) \phi_1^{\mathrm{T}} \boldsymbol{M} \phi_1 = \lambda_2^2 \phi_1^{\mathrm{T}} \Delta \boldsymbol{M} \phi_2 - \phi_1^{\mathrm{T}} (\boldsymbol{K} - \lambda_2^2 \boldsymbol{M}) \Delta \phi$ (2)

若 ϕ_1 的质量归一化振型为 ϕ ,可设 $\phi = \alpha \phi_1$,则 $\phi^{T} M \phi = 1$ 。根据式(2),有

$$\lambda_1^2 - \lambda_2^2 = \lambda_2^2 \alpha^2 \phi_1^T \Delta \boldsymbol{M} \phi_2 - \alpha^2 \phi_1^T (\boldsymbol{K} - \lambda_2^2 \boldsymbol{M}) \Delta \phi$$
(3)

设 $\lambda = (\lambda_1 + \lambda_2)/2, \Delta \lambda = \lambda_1 - \lambda_2, 有 2\lambda_1 = 2\lambda + \Delta \lambda$ 2 $\lambda_2 = 2\lambda - \Delta \lambda, 则$

 [■] 国家自然科学基金资助项目(编号:50575101);广西自然科学基金资助项目(编号:2012GXNSFAA053208);江苏省交通科学研究计划资助项目(编号:06Y20);广西教育厅科研资助项目(编号:200103YB105);广西工学院博士基金资助项目(编号:院科博1005)

 收稿日期:2011-01-01;修改稿收到日期:2011-04-25

$$\frac{2\Delta\lambda}{\lambda} = \alpha^2 \,\phi_1^{\mathrm{T}} \Delta M \,\phi_2 - \frac{\alpha^2}{\lambda_2^2} \,\phi_1^{\mathrm{T}} (K - \lambda_2^2 M) \Delta \,\phi - \,(\frac{\Delta\lambda}{\lambda_2})^2 \tag{4}$$

因为
$$2\lambda_2 = 2\lambda - \Delta\lambda, \frac{1}{1-x} = 1 + x + o(x^2),$$
由式(4)有

$$\frac{2\Delta\lambda}{\lambda} = \alpha^2 \phi_1^{\mathrm{T}} \Delta \boldsymbol{M} \phi_2 - \frac{\alpha^2}{\lambda_2^2} \phi_1^{\mathrm{T}} (\boldsymbol{K} - \lambda_2^2 \boldsymbol{M}) \Delta \phi - (\frac{\Delta\lambda}{\lambda_2})^2 - (\frac{\Delta\lambda}{\lambda})^2 + o\left[(\frac{\Delta\lambda}{\lambda})^3\right]$$
(5)

当质量阵 M 的改变量 ΔM 很小时,可假定结构的振型没有改变,即 $\Delta \phi = 0$,即 $\phi_1 \cong \phi_2 = \phi$,从而由式 (3)和式(5)可获得如下计算桥梁结构试验模态振型 质量归一化因子 α 的 4 种方法。

1.1 方法1

假定 $\Delta \phi = 0$,由式(3)得 $\lambda_1^2 - \lambda_2^2 = \lambda_2^2 \alpha^2 \phi_1^T \Delta M \phi_2$, 从而质量归一化因子为

$$\alpha_1 \approx \sqrt{(\lambda_1^2 - \lambda_2^2)/\lambda_2^2 \, \boldsymbol{\phi}_1^{\mathrm{T}} \Delta \boldsymbol{M} \, \boldsymbol{\phi}_2} \tag{6}$$

1.2 方法2

假定 $\Delta \phi = 0, \phi_1 \cong \phi_2, \text{由式}(3)$ 可得 $\lambda_1^2 - \lambda_2^2 = \lambda_2^2 \alpha^2 \phi_1^T \Delta M \phi_1,$ 从而质量归一化因子为

$$\alpha_2 \approx \sqrt{(\lambda_1^2 - \lambda_2^2)/\lambda_2^2} \phi_1^{\mathrm{T}} \Delta \boldsymbol{M} \phi_1$$
 (7)

1.3 方法3

假定 $\Delta \phi = 0$,由式(5)可得 $2\Delta \lambda / \lambda = \alpha^2 \phi_1^T \Delta M \phi_2$, 从而质量归一化因子为

$$\alpha_{3} \approx \sqrt{\frac{4(\lambda_{1} - \lambda_{2})}{(\lambda_{1} + \lambda_{2}) \phi_{1}^{T} \Delta \boldsymbol{M} \phi_{2}}}$$
(8)

1.4 方法4

假定 $\Delta \phi = 0, \phi_1 \cong \phi_2,$ 由式(5)可得 $2\Delta\lambda/\lambda = \alpha^2 \phi_1^T \Delta M \phi_1,$ 从而质量归一化因子为

$$\alpha_4 \approx \sqrt{\frac{4(\lambda_1 - \lambda_2)}{(\lambda_1 + \lambda_2) \, \boldsymbol{\phi}_1^{\mathrm{T}} \Delta \boldsymbol{M} \, \boldsymbol{\phi}_1}} \tag{9}$$

以上是计算桥梁试验模态振型的质量归一化因 子的4种近似方法。由上述4种方法可知,通过在桥 梁施加质量块实现质量阵的改变,再利用施加与未 施加质量块的各阶试验模态频率、振型和质量阵的 改变量,可求出未施加质量块时各阶试验模态振型 的质量归一化因子,从而实现桥梁各阶试验模态振 型的质量归一化。

2 仿真研究

基于运行模态分析的模态挠度法应用于桥梁状态评估时,只需桥梁的前几阶竖向振型对应的模态参数即可^[8];因此,模态试验只需布置竖向的传感器来测量竖向振型。在实际工程应用中,桥梁的运行模态分析只能获得前几阶模态参数,所以笔者只针对桥梁未施加质量时的前6阶竖向振型,利用通扬运河大桥和张家港河大桥的有限元模型,对4种方法计算其质量归一化因子的精度,仿真研究了质量块的数量和质量、传感器的数量、模态振型的误差和质量块质量的误差对4种方法计算精度的影响。利用MSC.Nastran软件对有限元模型进行模态分析,桥梁未施加质量块时,其对应的各阶模态振型都已质量归一化,其质量归一化因子的准确值都为1。

2.1 仿真对象简介

通扬运河大桥全长为429.892 m。大桥分成左 右两幅,每幅由一个主桥和两个副桥组成,其中右幅 主桥由77.03 m+100 m+59.3 m 的预应力砼连续 梁构成,如图1 所示。采用MSC.Patran 软件建立其 有限元模型,如图2 所示。该模型的前10 阶模态振型 中有6 阶竖向振型。

图1 通扬运河大桥的总体图

图 2 通扬运河大桥的有限元模型

张家港河大桥总长为 890.131 m,其上部采用 49 m+82 m+49 m 三跨预应力混凝土单箱双室直 腹板连续箱梁,如图3 所示。采用MSC.Patran 软件 建立其有限元模型,如图4 所示。该模型的前10 阶模 态振型中有6 阶竖向振型。

图 4 张家港河大桥的有限元模型

2.2 质量块数量对精度的影响

对于试验模态振型质量归一化因子的4种近似 计算方法,为了研究质量块数量对其精度的影响,考 虑在两大桥的有限元模型内外两侧分别施加14,18, 22 等 3 种数量的质量块,其中质量块的施加位置都 位于桥梁各跨两侧的均分点上,如图 5 所示。其中1 2,3,4 代表桥梁结构的4 个桥墩。3 种数量的质量块质 量分别为31.43,24.44,20 t,总重量都为440 t。

对两大桥未施加和施加以上3种数量质量块的 有限元模型分别进行模态分析,将相应的模态频率、 振型和质量阵改变量代入4种计算公式,可获得前6 阶竖向振型的质量归一化因子,与准确值1的百分 比误差如表1和表2所示。

表1 通扬运河大桥施加不同数量质量块的质量归一化因子百分比误差

	14	个均重 31	.43 t 质量	赴	18	个均重24	.44 <i>t</i> 质量	量块	2	22个均重	20 t 质量;	夬
n	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4
1	4.78	3.76	3.19	1.82	4.51	3.48	2.92	2.37	4.66	3.40	3.38	2.03
2	2.66	1.92	1.12	0.47	2.67	1.78	0.99	0.29	2.61	2.14	1.03	0.30
4	6.25	6.71	5.00	5.19	6.09	6.86	4.22	4.85	6.65	7.08	4.40	5.21
5	4.06	4.02	5.22	2.11	2.73	6.92	0.87	2.20	6.98	3.98	2.24	5.16
8	8.15	10.67	5.86	9.15	7.39	8.86	5.46	8.98	7.53	11.15	6.50	7.16
9	3.46	7.83	1.46	8.33	3.94	6.68	1.36	5.62	3.23	11.09	1.35	4.85
平均	4.89	5.82	3.64	4.51	4.56	5.76	2.64	4.05	5.28	6.47	3.15	4.12

表 2 张家港河大桥施加不同数量质量块的质量归一化因子百分比误差

	14	个均重 31	.43 t 质	量块	18	个均重24	.44 <i>t</i> 质量	赴	2	2 个均重	20 t 质量;	夬
n	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_3	R_4
1	6.38	5.00	4.32	2.96	6.02	5.80	4.36	4.07	6.52	5.02	4.55	3.07
2	6.98	7.67	4.76	5.44	7.21	8.82	4.58	5.68	9.65	9.36	7.59	7.30
3	7.39	7.03	5.17	4.83	7.14	7.07	5.00	4.96	9.30	8.50	7.28	6.49
4	4.05	4.96	1.43	2.31	3.93	4.07	1.38	1.52	3.69	3.66	1.49	1.46
6	3.18	7.92	0.80	5.42	2.81	5.86	0.78	3.77	2.82	5.21	0.57	2.90
10	6.19	15.56	2.28	10.93	5.01	8.17	1.50	4.21	3.97	9.01	1.08	5.84
平均	5.70	8.02	3.13	5.32	5.35	6.63	2.93	4.04	5.99	6.79	3.76	4.51

由表1 和表2 的结果可知,在施加的质量块总质 量相同的情况下,质量块的数量对质量归一化因子 的精度有影响。质量块的数量过多或过少都会导致 4 种方法计算的质量归一化因子的精度降低。当在 各跨各侧的4 分点上施加3 个质量块时,4 种方法计 算的质量归一化因子的精度最高,达到工程实际应 用的要求。从方法上看,4 种方法计算的模态振型的 质量归一化因子的精度,方法3 的精度最高,方法4 次之,方法1更次之,方法2相对较差。

2.3 质量块质量对精度的影响

通过在桥梁内外侧施加质量块,导致质量阵和 模态参数改变,从而实现各阶试验模态振型的质量 归一化;因此,质量块的质量必然会影响质量归一化 因子的精度。针对施加18个质量块的情形,每个质 量块分别取20,25,30t,研究质量块的质量对质量 归一化因子精度的影响。对有限元模型模态进行分析,将相应量代入4种计算公式,可获得前6阶竖向 振型的质量归一化因子,与准确值1的百分比误差 如表3和表4所示。施加质量块前、后的有限元模型的频率百分比误差表示为r1,r2和r3,结果如表5和表6所示。

表 3 通扬运河大桥施加不同质量的质量块的质量归一化因子百分比误差

	1	8个均重	20 t 质量	决	1	8个均重	25 t 质量均	决	1	8个均重;	30 t 质量均	夬
n -	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4
1	4.24	3.43	2.94	2.60	4.52	3.49	2.94	2.39	4.80	3.56	2.93	2.18
2	2.35	1.63	0.99	0.45	2.68	1.79	0.99	0.29	3.01	1.96	0.98	0.12
4	5.75	6.48	4.28	4.85	6.09	6.88	4.24	4.86	6.44	7.27	4.20	4.86
5	2.36	6.62	0.92	2.29	2.71	6.93	0.89	2.22	3.09	7.23	0.89	2.15
8	7.01	8.04	5.44	8.52	7.39	8.87	5.47	8.98	7.79	9.69	5.51	9.43
9	3.38	5.31	1.26	4.77	3.96	6.69	1.37	5.64	4.62	8.08	1.54	6.50
平均	4.18	5.25	2.64	3.91	4.56	5.78	2.65	4.06	4.96	6.30	2.67	4.21

表4 张家港河大桥施加不同质量的质量块的质量归一化因子百分比误差

	1	8个均重	20 t 质量	夬	1	8个均重	25 t 质量;	夬	1	8个均重	30 t 质量;	夬
11	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4
1	5.71	5.72	4.28	4.30	6.05	5.81	4.56	4.04	6.39	5.90	5.25	3.78
2	7.02	8.55	4.78	5.79	7.24	8.86	4.85	5.66	7.46	9.16	6.34	5.53
3	6.63	6.81	4.89	5.08	7.20	7.10	5.02	4.94	7.78	7.39	5.15	4.80
4	3.41	3.58	1.33	1.51	4.00	4.13	1.39	1.52	4.60	4.66	1.45	1.52
6	3.74	5.20	0.67	3.51	2.85	6.00	0.77	3.85	3.33	7.13	0.79	4.50
10	3.75	4.74	1.03	1.73	5.18	8.60	1.56	4.52	6.86	12.45	2.25	7.16
平均	5.04	5.77	2.83	3.65	5.42	6.75	3.02	4.09	6.07	7.78	3.54	4.55

表 5 通扬运河大桥施加不同质量块前、后的有限元模型的频率误差

п	$r_1 / \frac{0}{0}$	$r_2/\frac{0}{0}$	$r_3/\frac{0}{0}$	n	$r_1/\frac{0}{0}$	$r_2/\frac{0}{0}$	$r_3/\frac{0}{0}$	n	$r_1/\frac{0}{0}$	$r_2/\frac{0}{0}$	$r_3/\frac{0}{0}$
1	2.18	2.70	3.22	4	2.81	3.50	4.18	8	2.44	3.06	3.70
2	2.58	3.20	3.82	5	2.21	2.75	3.28	9	3.24	4.10	4.98

表6 张家港河大桥施加不同质量块前、后的有限元模型的频率误差

п	$r_1 / \frac{0}{0}$	$r_2/\frac{0}{0}$	$r_3 / \frac{0}{0}$	n	$r_1/\frac{0}{0}$	$r_2/\frac{0}{0}$	$r_3/\frac{0}{0}$	n	$r_1 / \frac{0}{0}$	$r_2 / \frac{0}{0}$	$r_3 / \frac{0}{0}$
1	2.66	3.29	3.92	3	2.92	3.63	4.33	6	3.16	3.96	4.79
2	2.80	3.48	4.15	4	3.93	4.89	5.84	10	5.11	6.65	8.28

由表3和表4可知,在施加的质量块数量和位置 相同的情况下,质量块的质量对质量归一化因子的 精度有影响。随着质量块的质量增加,会导致质量 归一化因子的精度降低。由表5和表6知,施加25t 质量块可保证识别出模态频率的变化和所计算的质 量归一化因子的精度。从方法上看,可知方法3的精 度最高,方法4次之,方法1更次之,方法2相对较差。

2.4 传感器数量对精度的影响

针对施加18个均重25 t 质量块的情形,考虑如下3种数量的传感器:a.在施加质量块的点上布置18个传感器;b.再在4个桥墩两侧布置8个传感器,

共26个传感器; c. 再在中跨2个传感器间增加1个 传感器, 共34个传感器。将相应的量分别代入4种计 算公式, 可获得前6阶竖向振型的质量归一化因子 与准确值1的百分比误差如表7和表8所示。

由表7 和表8 的分析结果可知,只要在施加有质 量块的点上布置传感器,在此基础上再增加传感器 所获得的试验模态振型不会影响质量归一化因子的 精度。这是因为随着传感器数量的增加,质量阵的改 变量ΔM 中除施加质量块的点对应的元素不为0 外 其他未施加质量块的点对应的元素都为0。因此 $\phi_1^T \Delta M \phi_1 和 \phi_2^T \Delta M \phi_2$ 的数值不变。

第32卷

表7 通扬运河大桥不同数量传感器下的质量归一化因子百分比误差

		布置26	个传感器			布置34~	个传感器			布置 50~	个传感器	
n -	R_1	R_2	R_3	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4
1	4.52	3.49	2.94	2.39	4.52	3.49	2.94	2.39	4.52	3.49	2.94	2.39
2	2.68	1.79	0.99	0.29	2.68	1.79	0.99	0.29	2.68	1.79	0.99	0.29
4	6.09	6.88	4.24	4.86	6.09	6.88	4.24	4.86	6.09	6.88	4.24	4.86
5	2.71	6.93	0.89	2.22	2.71	6.93	0.89	2.22	2.71	6.93	0.89	2.22
8	7.39	8.87	5.47	8.98	7.39	8.87	5.47	8.98	7.39	8.87	5.47	8.98
9	3.96	6.69	1.37	5.64	3.96	6.69	1.37	5.64	3.96	6.69	1.37	5.64
平均	4.56	5.78	2.65	4.06	4.56	5.78	2.65	4.06	4.56	5.78	2.65	4.06

表 8 张家港河大桥不同数量传感器下的质量归一化因子百分比误差

		布置26~	个传感器			布置34~	个传感器			布置 50~	个传感器	
n	R_1	R_2	R_3	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4
1	6.05	5.81	4.56	4.04	6.05	5.81	4.56	4.04	6.05	5.81	4.56	4.04
2	7.24	8.86	4.85	5.66	7.24	8.86	4.85	5.66	7.24	8.86	4.85	5.66
3	7.20	7.10	5.02	4.94	7.20	7.10	5.02	4.94	7.20	7.10	5.02	4.94
4	4.00	4.13	1.39	1.52	4.00	4.13	1.39	1.52	4.00	4.13	1.39	1.52
6	2.85	6.00	0.77	3.85	2.85	6.00	0.77	3.85	2.85	6.00	0.77	3.85
10	5.18	8.60	1.56	4.52	5.18	8.60	1.56	4.52	5.18	8.60	1.56	4.52
平均	5.42	6.75	3.02	4.09	5.42	6.75	3.02	4.09	5.42	6.75	3.02	4.09

2.5 模态振型误差对精度的影响

在模态试验测试中,受测试系统和模态识别方 法等因素的影响,最终获得桥梁的试验模态参数与 其真实值间必然存在一定的误差;因此,有必要研究 振型的误差对质量归一化因子精度的影响。针对施 加18个均重25 t 质量块的情形,假定各测点的各阶 振型数据存在它的 ϵ 内的随机误差,给定 ϵ =3%, 5%,7%,可获得前 6 阶竖向振型的质量归一化因 子,与准确值1的百分比误差如表9和表10所示。

比较表9与表3、表10与表4的结果可知,各阶 模态振型的误差对其质量归一化因子的精度有影 响,误差增大精度降低,但在5%的误差内,精度能达 到实际应用的要求;因此,4种方法对模态振型的误 差有一定的抗干扰性。为了提高质量归一化因子的 精度,可采用高精度传感器等手段减少噪声,提高测 试信号的精度,以减少试验模态参数误差对质量归 一化因子精度的影响。

表9 通扬运河大桥不同模态振型误差下的质量归一化因子百分比误差

		ε=	3 %			ε=	5%			ε=	7%	
n	R_1	R_2	R_3	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_3	R_4
1	4.86	3.62	2.37	1.52	5.83	4.72	0.08	5.88	4.62	1.53	2.44	2.65
2	2.91	2.29	0.02	0.33	1.74	2.73	0.84	2.00	5.50	3.03	0.83	0.03
4	5.24	6.08	5.39	4.24	4.24	8.36	5.13	4.57	4.81	5.96	5.25	2.34
5	3.31	5.81	0.30	2.45	1.63	8.28	1.73	4.85	0.08	2.64	0.23	1.37
8	6.57	9.26	5.94	9.44	8.82	8.02	5.62	9.51	8.78	8.68	6.68	6.24
9	5.65	6.35	1.75	6.15	2.92	7.45	1.28	4.44	6.60	4.42	3.78	4.31
平均	4.76	5.57	2.63	4.02	4.20	6.59	2.45	5.21	5.07	4.38	3.20	2.82

表 10 张家港河大桥模态振型误差下的质量归一化因子百分比误差

		$\epsilon =$	3%			ε=	5%			ε=	7 %	
n	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_3	R_4
1	7.29	6.27	5.26	5.29	6.94	7.12	6.82	4.03	6.56	7.53	7.26	3.97
2	6.56	9.15	5.43	4.84	5.06	9.78	4.57	4.45	7.98	6.90	4.12	2.05
3	7.91	6.61	5.37	4.05	7.62	8.62	5.46	3.33	7.80	7.23	3.13	5.42
4	3.45	4.29	1.72	1.09	5.83	3.49	0.92	0.77	4.51	8.61	4.31	3.54
6	2.49	6.16	1.26	5.10	3.79	7.11	0.98	3.97	5.58	6.15	1.68	0.83
10	5.64	7.71	1.41	4.63	6.94	7.24	2.03	4.21	5.80	7.20	0.94	5.70
平均	5.56	6.70	3.41	4.17	6.03	7.23	3.46	3.46	6.37	7.27	3.57	3.58

2.6 质量块质量误差对精度的影响

在工程实际应用中,对于所施加的各种质量块, 其质量难以完全等于设定值;因此,需研究附加质量 块的质量误差对振型质量归一化因子精度的影响。 针对施加18个均重25 t 质量块的情形,假定各质量 块的质量存在它的 ϵ 内的随机误差。给定 $\epsilon=1\%$, 3%,5%,可获得前6阶竖向振型的质量归一化因 子,与准确值1的百分比误差如表11和表12所示。

比较表11 与表3、12 与表4 的结果可知,各质量 块质量的误差对各阶振型的质量归一化因子的精度 有一定的影响,但影响较小。在工程实际应用中,各 质量块质量的误差容易控制在5%内,因此,质量块 质量的误差对各阶振型的质量归一化因子精度的影 响可忽略不计。

表 11 通扬运河大桥不同质量块质量误差下的质量归一化因子百分比误差

		$\epsilon =$	1%			$\epsilon =$	3%			$\epsilon =$	5%	
n	R_1	R_2	R_3	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4
1	4.52	3.49	2.94	2.39	4.52	3.48	2.93	2.37	4.56	3.53	2.99	2.45
2	2.68	1.79	0.99	0.28	2.68	1.80	0.99	0.29	2.67	1.81	1.01	0.33
4	6.08	6.88	4.23	4.86	6.07	6.94	4.19	4.89	6.13	6.96	4.28	4.93
5	2.73	6.92	0.91	2.21	2.42	6.47	0.58	1.75	2.98	7.13	1.15	2.41
8	7.38	8.86	5.46	8.98	7.52	8.90	5.61	9.04	7.39	8.95	5.43	9.04
9	3.95	6.67	1.38	5.64	4.00	6.75	1.43	5.72	3.98	6.73	1.42	5.71
平均	4.56	5.77	2.65	4.06	4.54	5.72	2.62	4.01	4.62	5.85	2.71	4.15

表 12 张家港河大桥质量块质量误差下的质量归一化因子百分比误差

		$\epsilon =$	1%			$\epsilon =$	3%			$\epsilon =$	5%	
n	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4	R_1	R_2	R_{3}	R_4
1	6.05	5.80	4.55	4.02	6.10	5.86	4.62	4.11	6.01	5.78	4.54	4.03
2	7.29	8.89	4.90	5.70	7.24	8.86	4.86	5.67	7.18	8.79	4.83	5.63
3	7.25	7.14	5.06	4.98	7.19	7.14	5.00	4.97	7.21	7.15	5.06	5.02
4	3.99	4.13	1.39	1.53	4.02	4.13	1.42	1.54	3.94	4.11	1.37	1.53
6	2.84	6.06	0.75	3.91	2.91	6.04	0.82	3.89	3.23	6.19	1.15	4.05
10	5.19	8.58	1.56	4.50	5.28	8.72	1.65	4.62	6.26	8.92	2.62	4.84
平均	5.43	6.77	3.03	4.11	5.46	6.79	3.06	4.13	5.64	6.82	3.26	4.18

3 结 论

1) 对于4 种计算试验模态振型质量归一化因子的方法,方法3 的精度最高,方法4 次之,方法1 更次之,方法2 相对较差。

2)质量块的数量对质量归一化因子的精度有影响,质量块的数量过多或过少都会导致所计算的 质量归一化因子的精度降低。当在桥梁结构两侧各 跨的四分点上施加3个质量块时,4种方法计算的质量归一化因子的精度最高,且精度达到工程实际应用的要求。

3)随着质量块的质量增加,所计算的质量归一 化因子的精度会降低。实际工程应用中,施加的质量 块总质量最好控制在桥梁主体结构总质量的4%~ 5%以内。各质量块质量的误差对各阶振型的质量归 一化因子的精度有一定的影响,但影响很小。 4)只要在施加有质量块的点上布置传感器,在 此基础上再增加传感器,所获得的试验模态振型不 会影响质量归一化因子的精度。

5)各阶模态振型的误差对其质量归一化因子的精度有影响,误差增大精度降低,但5%的误差内 精度达到实际应用的要求;因此,4种方法对模态振 型的误差有一定的抗干扰性。

6)基于附加质量的试验模态振型质量归一化 法,只需对桥梁施加一些质量块而进行重复模态试 验,即可实现试验模态振型的质量归一化。

参考文献

[1] Zhang Lingmi, Wang Tong, Tamura Y. A frequencyspatial domain decomposition (FSDD) method for operational modal analysis [J]. Mechanical Systems and Signal Processing, 2010,24:1227-1239.

第32卷

- [2] 王形,张令弥. 运行模态分析的频域空间域分解法及 其应用[J]. 航空学报,2006,27(1): 62-66.
 Wang Tong, Zhang Lingmi. Frequency and spatial domain decomposition for operational modal analysis and its application[J]. Acta Aeronautica Et Astronautica Sinica, 2006, 27(1): 62-66. (in Chinese)
- [3] 刘宗政,陈恳,郭隆德,等. 基于环境激励的桥梁模态 参数识别[J]. 振动、测试与诊断,2010,30(3): 300-303.

Liu Zongzheng, Chen Ken, Guo Longde, et al. Parameter identification of a bridge under ambient excitation [J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(3): 300-303. (in Chinese)

[4] 吴子燕,易文迪,赵宇.交通荷载作用下桥梁结构参数 识别方法[J].振动、测试与诊断,2009,29(4):383-387.

Wu Ziyan, Yi Wendi, Zhao Yu. Structural parameter identification of bridge excited by traffic loads [J]. Journal of Vibration, Measurement & Diagnosis, 2009, 29(4): 383-387. (in Chinese)

- [5] Lopez-Aenlle M, Fernandez P, Brincker R, et al. Scaling-factor estimation using an optimized masschange strategy [J]. Mechanical Systems and Signal Processing, 2010, 24: 1260-1273.
- [6] Parloo E, Verboven P, Guillaume P, et al. Sensitivitybased operational mode shape normalisation [J]. Mechanical Systems and Signal Processing, 2002, 16(5): 757-767.
- [7] Parloo E, Cauberghea B, Benedettini F. Sensitivitybased operational mode shape normalization: application to a bridge [J]. Mechanical Systems and Signal Processing, 2005, 19: 43-55.
- [8] 林贤坤,张令弥,郭勤涛,等. 基于模态挠度法的预应 力连续箱梁桥状态评估[J]. 土木工程学报,2010,43 (10): 83-90.

Lin Xiankun, Zhang Lingmi, Guo Qintao, et al. Application of modal deflection method for condition assessment of prestressed concrete continuous box-girder bridges[J]. China Civil Engineering Journal, 2010, 43(10): 83-90. (in Chinese)

- [9] 彭翠玲,张开银,涂扬志. 实验模态分析技术应用于桥 梁损伤检测[J]. 公路交通科技,2003,20(4): 44-46.
- [10] 李枝军,李爱群,缪长青. 刚架拱桥病害与损伤识别的 动力学研究[J]. 振动、测试与诊断,2008,28(4):387-389.

Li Zhijun, Li Aiqun, Miao Changqing. Damage identification of rigid-frame arch bridge based on dynamic tests[J]. Journal of Vibration, Measurement & Diagnosis, 2008, 28(4): 387-389. (in Chinese)

[11] 孙国,张洪武,蔡贤辉,等. 基于模态误差函数灵敏度 分析的损伤识别方法[J]. 振动工程学报,2007,20 (3): 303-308.

Sun Guo, Zhang Hongwu, Cai Xianhui, et al. A structural damage identification method based on sensitivity analysis of modal parameter error function[J]. Journal of Vibration Engineering. 2007, 20(3): 303-308. (in Chinese)

- [12] Zhang Q W. Statistical damage identification for bridges using ambient vibration data [J]. Computers and Structures, 2007, 85: 476-485.
- [13] 宋雨,项贻强,徐兴. 基于结构振动的桥梁损伤识别
 [J]. 振动、测试与诊断,2005,25(3): 222-226.
 Song Yu, Xiang Yiqiang, Xu Xing. Mode sharp-based damage identification of bridges[J]. Journal of Vibration, Measurement & Diagnosis, 2005, 25(3) 222-226. (in Chinese)

第一作者简介:林贤坤,男,1976年1月 生,副教授、博士。主要研究方向为桥梁 状态评估和车辆动力学。曾发表《基于模 态挠度法的预应力连续箱梁桥状态评 估》(《土木工程学报》2010年第43卷第 10期)等论文。

E-mail:Linxk0209@yahoo.cn

通信作者:覃柏英,女,1979年10月生, 讲师。主要研究方向为运筹与控制、结构 动态优化。

E-mail:qby5911@163.com