建立斜拉桥基准有限元模型的新方法与实现

王海龙^{1,2}, 刘 杰^{1,3}, 王新敏³, 张志国³

(1.西南交通大学土木工程学院 成都,610031) (2.河北建筑工程学院土木工程学院 张家口,075024)(3.石家庄铁道大学土木工程学院 石家庄,050043)

摘要 在进行斜拉桥监测与检测研究时,为了建立准确而可靠的基准有限元模型,使其索力、位移等趋于监测或检测结果,需进行模型修正工作,但各种模型修正方法多数需要进行迭代运算,不仅计算工作量巨大,而且有时难以 实现预期目标。针对这一问题,提出了一种使用 Ansys 与 Matlab 软件,利用影响矩阵和优化算法相结合进行模型 修正的新方法。该方法不需要迭代,可获得索力、位移等参数,且与实测值相吻合。通过实例对该方法进行了验证,证明了该方法可行并易于实现。

关键词 斜拉桥;基准有限元模型;模型修正;影响矩阵;优化 中图分类号 U448.27;TH11

引 言

损伤识别是进行桥梁承载力评估和制定维修养 护策略的前提[1],建立基准有限元模型是关键问题 之一。以此为基准方可进行模态分析、指纹分析、损 伤识别与诊断等后续分析工作。一般情况下,为获 得基准有限元模型需要进行模型修正,修正后的有 限元模型结果应趋于相应试验结果。获得的基准有 限元模型既是桥梁结构的健康模型,也是未来损伤 桥梁的参考模型^[2-4]。目前,有限元模型修正的各种 算法[5-9]中,无论是基于动力的算法(如最优矩阵法、 设计参数型法和频响函数法等),还是基于静力的算 法,以及动静结合算法等都需要进行迭代运算^[10]。 迭代运算过程中,当有限元模型计算值与实测值之 间的差异高于所定义的阈值时,需要更新模型重新 计算,反复迭代直至差值低于阈值。对于斜拉桥等 大型结构,这些算法不但计算工作量巨大,而且有时 难以达到预期目标。

笔者提出了一种建立斜拉桥基准有限元模型的 新方法。首先,利用 Ansys 软件在初始位置进行建 模,建模时不考虑主梁预拱度、变形和桥塔变形等状 态,通过影响矩阵法计算出索力、位移和应变等参数 的影响矩阵及相关向量;然后,利用 Matlab 软件的 优化函数,以斜拉索的初应变为决策变量,通过设定 目标函数和约束条件计算出斜拉索的初应变;最后, 将此初应变赋给 Ansys 模型中的斜拉索单元,计算 并获得与目标函数、约束条件相吻合的后处理结果。 该方法可使 Ansys 计算结果与成桥试验的试验结 果相吻合,获得的计算模型即为基准有限元模型。 不过,该方法中经 Matlab 软件优化出的初应变是为 获取基准有限元模型而选择的修正参数,不同于设 计或施工斜拉桥时张拉索力对应的初应变。另外, 因斜拉桥的非线性原因,优化出的初应变与实测索 力不满足胡克定律。

基准有限元模型的修正方法与实现 过程

1.1 修正方法

建立基准有限元模型不是利用影响矩阵进行成 桥状态设计或施工阶段控制,笔者主要介绍与传统 影响矩阵法不同的地方。关于成桥状态设计或施工 阶段控制的影响矩阵法的基本原理和过程参见文 献[11-14]。

斜拉桥示意如图 1 所示。斜拉索共有 N=n+n'根,0#,合龙段、支架现浇段无斜拉索。主梁划分为 <math>n+n'+5段,每段主梁的单元数假设为r,则主 梁的节点数 M=r(n+n'+5)+1。

^{*} 国家自然科学基金资助项目(51278315) 收稿日期:2013-05-20;修回日期:2013-08-25

)

Fig. 1 Sketch map of cable-stayed bridge

假设在结构自重、二期荷载以及主梁和桥塔横 梁预应力等各种荷载作用下,主梁位移满足叠加原 理。设主梁各节点位移的斜拉索影响矩阵为 E,斜 拉索对应的初应变向量为 x,斜拉桥在自重、二期恒 载以及预应力荷载作用下产生的主梁位移向量为 D,则影响矩阵法的主梁位移 y 可表示为

$$\mathbf{y} = \mathbf{E}\mathbf{x} + \mathbf{D} \tag{1}$$

影响矩阵为

$E_{M \times N} =$	e_{11}	e_{12}	•••	e_{1j}	•••	e_{1N}	(2)
	e_{21}	e_{22}		e_{2j}	•••	e_{2N}	
	:	÷	:	÷	:	:	
	e_{i1}	e_{i2}	•••	e_{ij}	•••	e_{iN}	
	:	:	÷	÷	÷	:	
	e_{M1}	e_{M2}	•••	e_{Mj}	•••	e_{MN}	

矩阵元素 e_{ij}定义如下:当第 j 根斜拉索为单位 初应变,其余所有斜拉索不施加初内力(即松弛状态 下的初应变)时,主梁节点或截面 i 处的位移。

设斜拉索索力的影响矩阵为 **F**,斜拉桥在自重、 二期恒载和预应力荷载作用下斜拉索索力向量为 **T**,则影响矩阵法的斜拉索索力方程可表示为

$$\mathbf{z} = \mathbf{F}\mathbf{x} + \mathbf{T} \tag{3}$$

要使斜拉索的计算索力与实测索力尽量接近, 可采用最小二乘法进行优化。取目标函数为

$$\min \frac{1}{2} \| \boldsymbol{F} \boldsymbol{x} - (-\boldsymbol{T}) \|_{2}^{2}$$
(4)

为保证主梁位移与实测位移相一致,需添加主 梁位移的约束条件。另外,由于斜拉索不能承受压 力,故需保证求得的斜拉索初应变为正数。约束条 件为

s. t.
$$\begin{cases} Ex + D = R \\ x \ge 0 \end{cases}$$
(5)

其中:R为实测位移。

当测点数量不足时,可根据主梁位移的连续性,采 用插值方法推算相应节点位移。

可利用该方法建立主梁内力、桥塔内力或位移的 影响矩阵方程,在保证主梁内力、桥塔内力或位移吻合 的前提下使斜拉索的计算索力与实测索力尽量接近。 按此方法,优化后可一次得到斜拉桥的基准有 限元模型。该方法既能保证计算索力与实测索力相 吻合,又能使主梁线形、内力或桥塔位移、内力与实 测值基本一致。

1.2 实现过程

Ansys 建模过程中,主梁预应力和桥塔横梁的 预应力采用等效荷载法,先推导出直线与曲线力筋 在各节点上的荷载分布情况,然后在节点上施加集 中力和弯矩。主梁和桥塔采用 beam188 单元,该单 元通过定义截面的方式输入且能实现变截面,通过 导入 AutoCAD 截面图的方式定义截面,以减少利 用 Ansys 直接绘制大量截面的工作量。斜拉索采 用具有仅拉或仅压功能的 link10 单元。考虑斜拉 桥的非线性,如斜拉索的垂度效应和梁-柱效应,打 开大变形开关,垂度效应采用 Ernst 等效弹性模量 法^[5]设定斜拉索的弹性模量。

本研究方法的关键环节是计算位移和内力对应 的各种影响矩阵和向量。因该环节的 Ansys 实现 技术与传统方式不同,特以确定主梁位移向量 y 为 例,说明其实现方法,并给出 Ansys 实现代码。

由式(1)可知,需先确定向量 D 和矩阵 E。为 能准确地计算出向量 D,根据影响矩阵法的基本原 理并结合 link10 单元特点,先将所有斜拉索的初应 变置为-1,这样所有斜拉索将处于松弛状态,即使 在自重、二期恒载以及预应力荷载等作用下主梁和 桥塔发生变形时斜拉索中也不会有索力,可求出在 非索力荷载作用下的向量 D。计算矩阵 E 某列元 素时,将该列元素对应的斜拉索初应变值取 1%而 不能取 1,方能保证正确施加。其余斜拉索初应变 置为-1,对每根斜拉索依次计算即可求得矩阵 E 所有元素。将向量 D 和矩阵 E 存放到文本文件中 供 Matlab 调用。

向量 D 的 Ansys 实现过程为:

 1)设置求解选项,包括静力计算、大变形、预应 力效应和自动时间步等;

2)修改实常数并求解,将每根斜拉索的初应变
 置为-1;

3) 创建文本文件用来存放向量;

4) 获取主梁节点数;

5) 获取主梁各节点的位移;

6) 将向量按一定格式写入文本文件。

其详细代码如下:

fini

solu

```
antype,0
nlgeom,1
pstres, on
autots, on
rmodif, 101, 2, -1
rmodif, 102, 2, -1
÷
rmodif, N, 2, -1
solve
* cfopen,Dead,txt
cmsel,s,cm_beam $ nsle,s,all
nsel, r, loc, y, 0
post_numNode=ndinqr(0,13)
* dim, Dead, , post numNode
* get, N_min, node, 0, num, min
Dead(1) = uy(N_min)
N next=ndnext(N min)
Dead(2) = uy(N_next)
* do,i,3,post numNode
N next=ndnext(N next)
Dead(i) = uy(N next)
* enddo
* vwrite. Dead(1)
```

(f12.5)

据此代码一步即可获得向量 D 所有元素,并按 格式存入 TXT 文件中。确定矩阵 E 的过程与确定 向量 D 类似,确定向量 T 与确定向量 D 方法也类 似,不再赘述。

确定矩阵 F 与确定向量 D 的过程有所不同,开 始时所有斜拉索的初应变应置为 0 而不能置为-1。 这主要是因为将斜拉索都设成松弛状态的情况下, 计算不出某根斜拉索对其余所有斜拉索的影响。

优化的实现采用 Matlab 软件,调取文本文件中 数据赋值给向量和矩阵,利用最小二乘函数进行优 化,包括给变量赋值、利用最小二乘函数优化、优化 结果保存为 Excel 文件等步骤,实现代码如下。

F=load('F.txt'); T=load('T.txt'); T=-T; E=load('E.txt'); D=load('dead.txt'); R=load('R.txt'); lb=0; [x,resnorm]=lsqlin(F,T,[],[],E,D,lb) xlswrite('E; \cable.xls',x/100,'cable','B3; B20')

大型结构的优化在 1 min 内即可优化成功。根据优化的斜拉索初应变重新计算,即可获得与 Matlab 优化结果非常接近的主梁线形及斜拉桥内力。

2 算 例

以某座斜拉桥为例,主桥为上跨铁路的单塔双 素面预应力混凝土斜拉桥,采用塔梁固结的形式。 斜拉索采用扇形布置,梁上的索距为6m。桥跨为 130m+130m,两跨对称布置18对斜拉索。主梁 采用预应力混凝土倒梯型的单箱四室截面,主梁中 间设三道直腹板,两侧设斜腹板,端部为风嘴形状。 主梁顶面全宽为37.5m,直线上标准段顶面设双向 2%横坡。标准断面梁高为3m,塔梁固结区加高到 3.5m。主梁标准断面底板宽为21.9m,底板厚为 28 cm,顶板厚为28 cm,斜边腹板厚为28 cm,中间 直腹板厚为40 cm。箱梁外侧悬臂宽为1.55m,厚 为100 cm。顺桥向根据拉索间距设置横梁,横梁腹 板厚为40 cm。斜拉桥结构模型如图2所示。

图 2 斜拉桥结构模型 Fig. 2 The Structure Model of cable-stayed bridge

利用本研究方法计算出影响矩阵和向量后,用 Matlab软件计算斜拉索初应变,如表1所示。将结

表 1 斜拉索初应变优化结果

Tab. 1 Optimal results of initial strain of cable-stayed bridge

斜拉索	初回	立变	斜拉索 编号	初应变		
编号	左跨	右跨		左跨	右跨	
C1	0.026 53	0.026 53	C10	0.001 34	0.001 36	
C2	0.023 01	0.023 02	C11	0.006 72	0.006 73	
C3	0.023 16	0.023 16	C12	0.004 87	0.004 83	
C4	0.023 11	0.023 11	C13	0.004 82	0.004 85	
C5	0.023 16	0.023 15	C14	0.004 50	0.004 52	
C6	0.023 20	0.023 20	C15	0.004 76	0.004 77	
C7	0.023 25	0.023 25	C16	0.004 42	0.004 48	
C8	0.023 30	0.023 31	C17	0.005 14	0.005 15	
C9	0.023 34	0.023 34	C18	0.032 67	0.032 69	

果存入 Excel 文件中,供 Ansys 调用。

由表 1 可看出,两个方向斜拉索初应变基本相同,与桥梁对称的实际情况相符。由于经过优化计算,个别斜拉索的初应变左右略有较小差别,可忽略不计。Ansys调用 Matlab 生成的 Excel 文件获取斜拉索初应变,进行求解获得计算结果。基准有限 元模型位移情况如图 3 所示。

图 3 斜拉桥位移图(单位:mm)

Fig. 3 Displacement plot of cable-stayed bridge(unit: mm)

计算结果与成桥实测结果对比如图 4 和图 5 所示。

图 4 斜拉桥主梁位移对比图

Fig. 4 Displacement contrast curve of calculated and measured values

图 5 斜拉桥斜拉索索力对比图

Fig. 5 Cable force contrast curve of calculated and measured values 由图 4、图 5 可知,主梁线形及索力与实测值吻 合非常好,实现了模型修正的目的。

3 结 论

 1)通过修正斜拉索初应变实现模型修正的方法可行、有效,能方便、快速地获得与成桥试验数据 相吻合的斜拉桥基准有限元模型。

 2)该方法不需要任何迭代,经过优化,一步就 能找到斜拉索的初始应变,具有计算代价低的特点。

 3)因该方法简便快速,可考虑应用到斜拉桥实 时健康监测和在线模型修正中。

参考文献

 [1] 杨小森,闫维明,陈彦江,等.基于模型修正的大跨斜拉桥损伤识别方法[J].振动、测试与诊断,2012,32(2): 276-281.

Yang Xiaosen, Yan, Weiming, Chen Yanjiang, et al. Damage detection method for long span cable-stayed bridge based on model updating[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32 (2): 276-281. (in Chinese)

 [2] 李惠,欧进萍. 斜拉桥结构健康监测系统的设计与实现(I):系统设计[J]. 土木工程学报,2006,39(4): 39-44.

Li Hui, Ou Jinping. Design and implementation of health monitoring systems for cable-stayed bridges (I):design methods[J]. China Civil Engineering Journal, 2006, 39(4):39-44. (in Chinese)

 [3] 李惠,欧进萍. 斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统设计[J]. 土木工程学报,2006,39(4): 45-53.

Li Hui, Ou Jinping. Design and implementation of health monitoring systems for cable-stayed bridges ([]) : design methods[J]. China Civil Engineering Journal, 2006, 39(4):45-53. (in Chinese)

- [4] Zong Zhouhong, Wang T L, Huang D Z, et al. Stateof-the-art report of bridge health monitoring[J]. Journal of Fuzhou University: Natural Science, 2002, 30 (2):122-157.
- [5] 辛克贵,刘钺强,杨国平.大跨度斜拉桥恒载非线性静 力分析[J].清华大学学报,2002,42(6):818-821.
 Xin Kegui, Liu Yueqiang, Yang Guoping. Nonlinear static analysis of lang-span cable-stayed bridges under dead loads[J]. Journal of Tsinghua University,2002,

42(6):818-821. (in Chinese)

- [6] 叶梅新,韩衍群,张敏. 基于 Ansys 平台的斜拉桥调索 方法研究[J]. 铁道学报,2006,28(4):128-131.
 Ye Meixin, Han Yanqun, Zhang Min. Research on adjusting cable forces of cable-stayed bridges based on Ansys[J]. Journal of The China Railway Society, 2006, 28(4):128-131. (in Chinese)
- [7] 任伟新,彭雪林.青洲斜拉桥的基准动力有限元模型
 [J].计算力学学报,2007,24(5):609-614.
 Ren Weixin, Peng Xuelin. Baseline dynamic finite element model of Qingzhou cable-stayed bridg [J].
 Chinese Journal of Computational Mechanics, 2007, 24(5):609-614, (in Chinese)
- [8] 李建慧,李爱群,缪长青,等. 润扬大桥修正斜拉索力的基准有限元模型[J]. 东南大学学报:自然科学版, 2007,37(2):266-269.

Li Jianhui, Li Aiqun, Miao Changqing, et al. Baseline FE model to revise cable forces in Runyang Cable-Stayed Bridge[J]. Journal of Southeast University: Natural Science Edition, 2007, 37(2): 266-269. (in Chinese)

- [9] 姚昌荣,李亚东. 基于静动力测试数据的斜拉桥模型 修正[J]. 铁道学报,2008,30(3):65-70.
 Yao Changrong, Li Yadong. Updating of cable-stayed bridges model based on static and dynamic test data
 [J]. Journal of the China Railway Society, 2008, 30 (3):65-70. (in Chinese)
- [10] 宗周红,任伟新.桥梁有限元模型修正和模型确认 [M].北京:人民交通出版社,2012:1-8.
- [11] 施笃铮,汪劲丰,项贻强,等. 斜拉桥施工过程中的索力控制与优化研究[J]. 中国公路学报,2002,15(2):57-60.
 Shi Duzheng, Wang Jinfeng, Xiang Yiqiang, et al. Optimum tensioning in construction state of cable-stayed

bridge[J]. Chian Journal of Highway and Transport, 2002, 15(2):57-60. (in Chinese)

- [12] 梁鹏,肖汝诚,张雪松. 斜拉桥索力优化实用方法[J].
 同济大学学报:自然科学版,2003,31(11):1270-1274.
 Liang Peng, Xiao Rucheng, Zhang Xuesong. Practical method of optimization of cable tensions for cable-stayed bridges[J]. Journal of Tongji University:Natural Science, 2003,31(11):1270-1274. (in Chinese)
- [13] 张建民,肖汝诚. 千米级斜拉桥施工过程中主梁的线 形控制[J]. 同济大学学报:自然科学版,2004,32 (12):1567-1572.
 Zhang Jianmin,Xiao Rucheng. Study on linear control of girders in construction state for a thousand-meter scale cabIe-stayed bridge[J]. Journal of Tongji University:Natural Science, 2004, 32(12):1567-1572. (in Chinese)
- [14] 闫维明,张志,陈彦江,等.大跨度斜拉桥施工过程中 的索力控制方法[J].土木建筑与环境工程,2010,32 (5):130-134.

Yan Weiming, Zhang Zhi, Chen Yanjiang, et al. Method of cable tension controlling in the long-span cable-stayed bridge construction[J]. Journal of Civil Architectural Environmental Engineering, 2010, 32 (5):130-134. (in Chinese)

第一作者简介:王海龙,男,1965年10 月生,教授、博士生导师,主要研究方向 为大跨度桥梁的力学行为,曾发表《带肋 钢筋与混凝土粘结性能的细观数值模 拟》)《西南交通大学学报》2011年第46 卷第3期)等论文。

E-mail:wanghl@hebiace.edu.cn