自适应 Laplace 统计模型下的量子降噪算法

陈彦龙, 张培林, 王怀光

(军械工程学院七系 石家庄,050003)

摘要 受量子理论启发,提出自适应 Laplace 统计模型下的量子降噪算法,并将其成功应用于机械故障诊断。建立 起带自适应参数的 Laplace 概率密度函数模型,提高统计模型的适用性;结合贝叶斯估计理论,推导出小波系数收 缩函数;利用父-子代小波系数的相关性,提出量子叠加态信号与噪声出现概率,并推导出基于量子叠加态参数估 计的方差公式,实现小波系数的非线性收缩。通过仿真试验和轴承故障诊断实例分别对此算法进行分析和验证, 结果表明,该算法均具有良好的降噪效果,可以有效地对机械振动信号进行降噪。

关键词 降噪措施; 概率统计; 量子力学; 参数估计 中图分类号 TH113.1; TN911.7

引 言

在机械状态监测研究中,振动信号分析方法是 一种广泛使用的方法。但是,由于机械设备的振源 多,现场采集的振动信号往往受到噪声的干扰,真实 信号甚至被随机噪声淹没,严重影响机械设备状态 分析的准确性。噪声的产生机理极为复杂,有时难 以有效去除信号中的噪声。因此,信号的降噪处理 一直是信号处理领域的热点和难点问题^[1]。

考虑到机械信号的非线性非平稳振动特征,小 波分析在信号处理得到了大量应用,在降噪时往往 需要对小波系数进行阈值处理以提高信噪比,但阈 值降噪方法存在两个问题。a. 一般多对小波系数进 行切削[2-4],造成小波系数的不规则变化,影响了降 噪的效果。工程信号为噪声与有用信号的叠加,这 一特点与量子叠加态相似,受量子信号处理(quantum signal processing,简称 QSP)基本理论的启发, 文中借鉴量子叠加态这一基本概念,结合小波系数 的相关性[5-6]进行研究,对小波系数的变化进行非线 性收缩,使小波系数变化平滑。b. 这些方法中隐含 小波系数服从高斯分布的假设,但小波的压缩特性 使得小波系数的概率密度分布跟高斯分布相比,具 有"高峰值"和"长拖尾"的特征,假设小波分解的系 数满足高斯分布得到的结论并不准确[7]。文献[8-9]根据机械振动信号的小波系数进行拉普拉斯建 模,有效地实现信号降噪。然而其采用标准的 Laplace模型,而工程中的信号不可能严格符合这一假设。为解决这一问题,文中基于 Laplace 统计模型 重新设计了一种含可变参数的概率密度函数,并考虑了均值,提高统计模型的适用性。

笔者受量子理论的启发,充分利用了小波系数 尺度间相关性,结合贝叶斯理论,提出了一种基于 Laplace统计模型和量子理论的降噪新方法:自适应 Laplace统计模型下的量子降噪算法(quantum denoising method based on adaptive Laplace statistical model,简称 QDMALSM),并将其应用于机械 故障诊断中,取得了良好的降噪效果。

1 统计模型的建立

1.1 概率密度函数

对信号的小波系数分布规律进行研究,建立相 应的数学建模,有助于从含噪信号中估计出原信号, 实现降噪的目的。基于离散正交小波变换(discrete wavelet transform,简称 DWT)的降噪会产生伪 Gibbs 现象,降噪后的信号在奇异点或不连续点将 产生振荡,对设备的监测分析造成较大影响,DWT 存在伪 Gibbs 现象的根源是其不具备平移不变 性^[10]。双数复小波(dual-tree complex wavelet transform,简称 DTCWT)具有近似平移不变性等一系列 性质^[11],理论和实践均表明,信号分析效果更好,因 此文中采用 DTCWT 实现一维机械振动信号的小波

^{*} 国家自然科学基金资助项目(51205405,51305454) 收稿日期:2013-06-20;修回日期:2013-08-14

变换,为表述方便,下文的小波代指双树复小波。

对一含加性高斯白噪声的信号 y(t)进行小波 变换,由小波变换的线性性质,有

$$Y = X + N \tag{1}$$

其中: $Y = Y_r + iY_i$ 为含噪信号双树复小波系数; $X = X_r + iX_i$ 为无噪信号双树复小波系数; $N = N_r$ $+ iN_i$ 为噪声复小波系数。

DTCWT采用了二叉树结构的两路 DWT,一树生成变换的实部,一树生成虚部,因此对其虚部和 实部分别进行建模。研究表明,高斯白噪声经小波 变换后仍为同方差的高斯白噪声。

$$f(N_r) = \frac{1}{\sqrt{2\pi}\sigma_{N_r}} \exp(-\frac{N_r^2}{2\sigma_{N_r}^2})$$
(2)

$$f(N_i) = \frac{1}{\sqrt{2\pi\sigma_{N_i}}} \exp(-\frac{N_i^2}{2\sigma_{N_i}^2})$$
(3)

文献[8-9]假设信号经过小波变换后小波系数 符合标准 Laplace 统计分布,建立了一种新的降噪 方法。然而,在工程信号中,小波系数不可能严格符 合 Laplace 分布,直接应用 Laplace 分布建模是不合 理的,为了提高小波系数分布模型的通用性,笔者提 出了一种带可调参数 k 的 Laplace 概率密度函数, 并将小波系数的平均值考虑在内,从理论和工程上 增加模型的适用性。假设无噪信号小波实部系数的 真实概率密度分布为 $f(X_r)$,无噪信号小波虚部系 数的真实概率密度分布为 $f(X_r)$,其数学模型为

$$f(X_r) = \frac{1}{\sqrt{2}\sigma_r} \exp\left(-\frac{\sqrt{2}|X_r - u_r|}{\sigma_r} \cdot e^{k_r}\right) \quad (4)$$

$$f(X_i) = \frac{1}{\sqrt{2}\sigma_i} \exp\left(-\frac{\sqrt{2}|X_i - u_i|}{\sigma_i} \cdot e^{k_i}\right) \quad (5)$$

其中: $-\infty < X_r < \infty$, $-\infty < X_i < \infty$; u_r , u_i 分别为 X_r , X_i 的均值; σ_r , σ_i 分别为 X_r , X_i 的标准差; k_r , k_i 为可调参数,当 $k_r = 0$, $k_i = 0$ 时,式(4~5)为 Laplace 分布。

1.2 可调参数 k 的确定

在建立的统计模型中, k 为小波系数概率密度 函数的关键参数,其取值关系到概率密度函数的形 状和拟合精度。根据各个尺度中双树复小波系数密 度函数的最小均方差确定对应的 k 值。

$$k_1 = E(f_{oX_r}(X_r) - f_{X_r}(X_r))^2$$
(6)

$$k_r = \min(k_1) \tag{7}$$

$$k_{2} = E(f_{oX_{i}}(X_{i}) - f_{X_{i}}(X_{i}))^{2}$$
(8)

$$k_i = \min(k_2) \tag{9}$$

其中: $f_{\sigma X_r}(X_r)$, $f_{\sigma X_i}(X_i)$ 为实际的直方图分布; $f_{X_r}(X_r)$, $f_{X_i}(X_i)$ 为根据直方图曲线拟合得到的 分布。 拟合过程中,根据双树复小波实部、虚部系数直方图分布曲线的最大值 P_r 和 P_i ,求出 σ_r , σ_i 。

$$\sigma_r = (\sqrt{2} P_r)^{-1} \tag{10}$$

$$\sigma_i = (\sqrt{2} P_i)^{-1} \tag{11}$$

当 k 的误差精度为 0.1 时,双树复小波系数的 分布拟合精度不够。当 k 的误差精度为0.001时,增 加了计算时间,但分布拟合的精度与 k 的误差精度 为0.01时接近。综合考虑分布拟合精度和计算速度 后,设定 k 值的误差精度为 0.01。

2 量子叠加态参数估计模型

2.1 量子叠加态

在量子计算中,量子比特有|0>和|1>两个基本状态,量子比特的状态可以是|0>和|1>的叠加态^[12],其数学形式为

$$\mid \Phi \rangle = \alpha \mid 0 \rangle + \beta \mid 1 \rangle \tag{12}$$

α和β称为量子态的概率幅,满足归一化条件

$$|\alpha|^{2} + |\beta|^{2} = 1$$
 (13)

小波系数中包含了噪声和有用信号两种信息, 如果用|0>代表噪声信号小波系数,用|1>代表有 用信号小波系数,分析概率幅 α 和 β 就能够得出二 者的关系,有利于降噪。

2.2 贝叶斯 MAP 估计器

对信号的降噪,就是从含噪信号中估计出原信号的过程。根据所提的统计模型建立小波系数的概率模型,采用贝叶斯最大后验估计(maximum a posteriori,简称 MAP),能够对含噪信号中的真实信号小波系数进行估计,用估计出的小波系数恢复出真实信号,从而达到降噪目的。

根据含噪信号小波系数 Y,获得使后验概率密 度函数 P_{X|Y}取最大值的无噪小波系数 X。此处以 实部的密度函数为例,即

$$X_{rMAP} = \arg \max_{X_r} (p_{X_r \mid Y_r} (X_r \mid Y_r))$$
 (14)

根据贝叶斯原理

$$p_{X_r \mid Y_r}(X_r \mid Y_r) = \frac{p_{N_r}(Y_r - X_r) p_{X_r}(X_r)}{p_{Y_r}(Y_r)}$$

(15)

根据信号小波系数模型式(4)和噪声小波系数 模型式(2),式(15)可写为

$$X_{rMAP} = \arg \max_{X_r} (p_{N_r}(Y_r - X_r) p_{X_r}(X_r)) = \arg \max_{X_r} (\ln p_{N_r}(Y_r - X_r) + \ln p_{X_r}(X_r)) =$$

$$\arg \max_{X_{r}} (\frac{(Y_{r} - X_{r})^{2}}{2\sigma_{N_{r}}^{2}} \frac{\sqrt{2} |X_{r} - u_{r}|}{\sigma_{r}} e^{k_{r}}) \quad (16)$$

求 *X*_r 的导数,并令其为 0,经简单推导,*X*_r 的 估计式为

$$\dot{X}_{r} = \begin{cases} \max\{Y_{r} + \frac{\sqrt{2}\sigma_{N_{r}}^{2}}{\sigma_{r}}\exp(k_{r}), 0\} & (X_{r} < u_{r}) \\ \max\{Y_{r} - \frac{\sqrt{2}\sigma_{N_{r}}^{2}}{\sigma_{r}}\exp(k_{r}), 0\} & (X_{r} \ge u_{r}) \end{cases}$$
(17)

期望 u_r 估计式为

 $u(Y_r) = u(X_r + N_r) = u(X_r) + u(N_r)$ (18) $\oplus \mp$

$$u(N_r) = 0 \tag{19}$$

所以

$$u(X_r) = u(Y_r) \tag{20}$$

假设 X_r 和 Y_r 正负相同,当 $u_r = 0$ 时,式子可以 简化为

$$\dot{X}_{r} = \max\{|Y_{r}| - \frac{\sqrt{2}\sigma_{N_{r}}^{2}}{\sigma_{r}}\exp(k_{r}), 0\}\operatorname{sgn}(Y_{r})$$
(21)

其中:sgn()为符号函数; $|Y_r| - \frac{\sqrt{2}\sigma_{N_r}^2}{\sigma_r} \exp(k_r)$ 为收 缩因子。

若将
$$\frac{\sqrt{2\sigma_{N_r}^2}}{\sigma_r}$$
exp(k_r)看成软阈值,则式(21)是具

有软阈值函数形式的 MAP 估计,它为从实测系数 中估计出真实信号小波系数提供了理论基础。

当信号模型的可调参数 $k_r = 0, u_r = 0$ 时,式子 将退化为 Laplace 模型下的参数估计

$$\dot{X}_r = \max\{|Y_r| - \frac{\sqrt{2}\sigma_{N_r}^2}{\sigma_r}, 0\}\operatorname{sgn}(Y_r) \quad (22)$$

同理,虚部小波系数估计为

$$\dot{X}_{i} = \begin{cases} \max\{Y_{i} + \frac{\sqrt{2}\sigma_{N_{i}}^{2}}{\sigma_{i}}\exp(k_{i}), 0\} & (X_{i} < u_{i}) \\ \max\{Y_{i} - \frac{\sqrt{2}\sigma_{N_{i}}^{2}}{\sigma_{i}}\exp(k_{i}), 0\} & (X_{i} \ge u_{i}) \end{cases}$$
(23)

并可简化为

$$\dot{X}_{i} = \max\{|Y_{i}| - \frac{\sqrt{2}\sigma_{N_{i}}^{2}}{\sigma_{i}}\exp(k_{i}), 0\}\operatorname{sgn}(Y_{i}) \quad (24)$$

2.3 量子叠加态参数估计

在分析小波系数相关性的基础上,结合量子叠 加态的原理,给出了基于量子叠加态的参数估计方 法,并对式(21),(24)中的关键参数进行估计。信号 和噪声在小波域上有着不同的奇异特性,信号经小 波变换之后,其小波系数在各尺度上具有较强的相 关性,尤其是在信号的突变点附近,而噪声的小波系 数将随着尺度的增加迅速减小。信号突变点子代与 父代系数乘积将大于噪声子代与父代系数乘积,因 此可根据相邻尺度的小波系数乘积来减少噪声。

以实部为例,父-子代小波系数模乘积表达式为

 $C_{s,r}^{2j-1} = |Y_r(s+1,j)| \times |Y_r(s,2j-1)| \quad (25)$

 $C_{s,r}^{2j} = |Y_{r}(s+1,j)| \times |Y_{r}(s,2j)|$ (26) 其中:s 代表父代;s+1 代表子代; $C_{s,r}^{2j-1}$ 和 $C_{s,r}^{2j}$ 表示 在尺度 s 中对应位置 j 的父代实部系数模 | $Y_{r}(s,2j-1)|$, | $Y_{r}(s,2j)$ | 与当前子代系数模 | $Y_{r}(s+1,j)$ |的乘积;r 代表实部。

小波系数实质上是噪声小波系数与有用信号小 波系数的叠加,这一点与量子力学中的量子叠加态 相似。Eldar^[13]提出了量子信号处理(QSP)理论,并 将量子力学的数学框架应用于信号处理领域。受 QSP 基本理论的启发,根据量子叠加态原理,父子 代小波实部系数模的乘积 C^{2j-1}和 C^{2j}可以表达为 噪声小波系数与信号小波系数的量子态叠加

| Cⁱ_{s,r}>=a | 0>+b | 1> (27) 其中:a 和 b 分别表示噪声小波系数 | 0>与有用信 号小波系数 | 1>的概率幅。

将 $C_{s,r}^{i}$ 进行归一化得 $NC_{s,r}^{i} \in [0,1]$,并令 $a = \cos(NC_{s,r}^{i}\pi/2), b = \sin(NC_{s,r}^{i}\pi/2),$ 则满足归一化条 件 $|a|^{2} + |b|^{2} = 1$,得到

$$\mid C_{s,r}^{j} \rangle = \cos(NC_{s,r}^{j}\pi/2) \mid 0 > +$$

 $\sin(NC_{s,r}^{j}\pi/2) \mid 1 >$ (28)

在物理意义上, NCs., 反映了有用信号和噪声信号的出现概率。NCs., 值越小表明对应位置的父子 代小波系数具有的相关性较小或者能量较小,该位 置出现噪声的概率越大;反之, NCs., 值越大表明对 应位置的父子代小波系数具有较大的能量和相关 性,该位置出现有用信号的概率越大。

经过变换后,式(28)中 cos² ($NC_{s,r}^{j}\pi/2$)表示尺 度 *s* 中位置 *j* 的噪声出现概率,sin² ($NC_{s,r}^{j}\pi/2$)表示 尺度 *s* 中位置 *j* 的信号出现概率。当 $NC_{s,r}^{j}=0$,则 完全为噪声;当 $NC_{s,r}^{j}=1$ 则完全为有用信号。结合 有用信号与噪声的出现概率,提出的当前位置 *j* 量 子叠加态噪声方差 $\sigma_{N_{r}}^{2}$ 的估计式为

$$\sigma_{N_r}^2(j) = (med(Y_r/0.6745)^2 \times$$

 $\exp(\cos^2(NC_{s,r}^j\pi/2))$ (29)

当前位置 j 量子叠加态信号方差σ, 估计式为

$$\sigma_{r}^{2}(j) = \max\{\frac{1}{M_{j}}\sum_{\zeta m \in W^{j}} |Y_{r^{(s,m)}}|^{2} - \sigma_{N_{r}^{2}}^{2}(j), 0\} \times \exp(\sin^{2}(NC_{s,r}^{j}\pi/2))$$
(30)

同理,虚部当前位置 j 量子叠加态噪声方差 $\sigma_{N_i}^2$ 的估计式为

$$\sigma^2_{N_i}(j) = (\operatorname{med}(Y_i/0.674\ 5)^2 imes$$

$$\exp(\cos^2(NC_{s,i}^j\pi/2)) \tag{31}$$

虚部当前位置 *j* 量子叠加态信号方差σ_i 估计 式为

$$\sigma_i^2(j) = \max\{\frac{1}{M_j}\sum_{\substack{ (m \in W^j) \\ (m \in W^j)}} |Y_{i^{(s,m)}}|^2 - \sigma_{N_i^2}(j), 0\} \times$$

 $\exp(\sin^2(NC_{s,i}^j\pi/2)) \tag{32}$

其中:W^{*i*} 是以当前系数 Y(s, *j*)为中心的子窗口; *M_i* 为窗口中系数的个数,取第 *s* 尺度上邻域窗 W^{*i*} 宽度 *M_i* = 2^{*s*+1}-1。

笔者提出的基于量子叠加态的小波系数估计方法,较好地利用了小波系数的尺度间相关性。将式 (29)和式(30)代入式(21)可知,如果量子叠加态表 明有用信号出现出现概率大,收缩因子自适应变大; 反之,收缩因子自适应变小,该自适应收缩函数有利 于噪声的抑制。

3 降噪算法步骤

提出的信号降噪算法具体步骤如下:a.利用 DTCWT,对含噪信号 y(t)进行分解;b.根据各个尺 度高频小波系数的分布直方图,拟合确定对应的 k_r 和 k_i 值;c.根据量子叠加态参数估计方法,利用式 $(29~32)对 \sigma_{N_r}^2, \sigma_r^2, \sigma_{N_i}^2, \sigma_i^2$ 进行估计,计算得到 $\sigma_{N_r}^2, \sigma_r^2, \sigma_{N_i}^2, \sigma_i^2, j \in \mathbb{R}$,并根据式(21),(24)修正小波系数;d.根据 修正后的 DTCWT 小波系数逆变换得到降噪信号。

4 仿真和实际信号验证

4.1 仿真信号

采用 HeaviSine、Blocks 和 Bumps 信号^[14]验证 所提模型降噪的可行性和有效性,信号长度为2 048 点。在3种信号中加入高斯白噪声,使含噪信号的 信噪比分别为 13,14 和 15 dB。独立进行 20 次实 验,取其平均值,结果如表1 所示。

采用信噪比(signal to noise ratio,简称 SNR) 来评价降噪效果。若在原始信号 y(t)中加入噪声 n(t),降噪后得到的信号为 d(t),则信噪比公式为

SNR = $10\lg(P_d/P_n)$ dB (33) 其中: P_d 为原始信号功率; P_n 为噪声功率。

信号的噪声由原始信号 y(t)减去降噪信号d(t) 得到。

表 1 不同算法的降噪结果 Tab. 1 Results of different algorithms for denoising

		0		0
算法	SNR	HeaviSine	Blocks	Bumps
量子降噪	13	26.7	21.0	20.5
	14	27.4	21.9	21.3
	15	28.2	22.9	22.0
硬阈值	13	25.5	19.2	19.9
	14	26.1	19.7	21.1
	15	26.5	20.8	21.8
软阈值	13	25.3	15.7	13.1
	14	25.8	16.2	14.0
	15	26 4	16.8	1/ 8

$$p_d = \sum y(t)^2 \tag{34}$$

$$p_n = \sum (y(t) - d(t))^2$$
 (35)

采用传统软、硬阈值降噪法进行效果对比,阈值 λ均为

$$\lambda = \sqrt{2\ln(N)} \ \frac{\mathrm{m}\,\mathrm{ed}(\overline{|W|})}{0.674} \ 5 \tag{36}$$

其中:N为信号小波系数总个数;|W|为最低尺度上的小波系数。

从表1可以看出,从整体来说,自适应 Laplace 统计模型下的量子降噪算法(QDMALSM)降噪效 果最好,大大提高了信号的信噪比,信噪比优于软硬 阈值降噪算法。

4.2 实际信号

采用某新型机械设备的综合传动装置进行研究,在轴承内圈上加工出划痕。在综合传动装置上 采集加速度振动信号,实测转动速度为1830r/ min,传感器安装在对应轴承位置的箱盖上方。经 过理论计算,内圈故障频率应为158Hz,采样频率 12kHz,采样时间为1s,取2048点进行分析。故 障信号波形如图1(a)所示,频谱中可以看出,故障 频率淹没在噪声频率中。对不同降噪方法的结果进 行比较,结果见图2~4。

1) 波形分析。从图形上可以看出,软阈值与硬 阈值去除了大量噪声,但也去除了有用信号,量子降 噪方法使得噪声大部分被消除的同时,较好地保留 了轴承故障的冲击特征,脉冲波形相对完整,对信号 的细节特征保留明显优于其他两种降噪算法。

2)周期分析。软硬阈值降噪后的脉冲周期不 准确,基于量子叠加态的参数估计降噪方法所得脉 冲周期准确,通过测量,降噪后信号明显地存在间隔 为 6.3 ms的冲击,对应于内圈故障频率158 Hz,初 步判定滚动轴承内圈出现了故障。

3)频谱分析。小波阈值降噪后,158 Hz 频率 突出,但是调制频率不准确;采用本研究方法得到的

dB

频谱中 158 Hz 伴随明显的边带,此外转频 (30.5 Hz)及其二倍频(61 Hz)和三倍频(91.5 Hz) 明显,符合轴承的内圈故障频谱特点,确定发生了内 圈故障。由于设备体积大,其他部位引起的振动衰 减快,在波形上不易观察,通过分析频谱图可以发现 其他频率的存在,说明文中降噪方法不仅得到了冲

击信号,机械设备的其他振动成分也得到了保留。

4)实用性比较。小波阈值降噪中,尽管笔者采 用全局阈值公式对信号进行降噪,但在实际应用中, 为得到最佳降噪效果,需要通过大量尝试以确定最 终阈值,而笔者算法中阈值的确定方法有效避免了 人为因素的影响。

5 结 论

 算法在建立小波系数的统计模型时,一方面 在 Laplace 模型中加入可调参数 k,另一方面考虑了 小波系数的均值,使得该分布模型在理论和实践中 具有更强的适应能力。

2)基于量子叠加态的机械振动信号降噪方法, 利用了小波系数的相关性,采用量子理论对贝叶斯 理论中的参数进行了估计,对系数进行非线性收缩, 仿真信号和实测信号的降噪结果表明,所提算法比 软硬阈值降噪方法能获得更高的信噪比,具有更强 的奇异点细节特征保留能力。

3) 笔者所提出的降噪方法有效地保留了轴承的冲击信号,周期准确,为强背景噪声下的机械故障信息提取提供了一条新途径。

参考文献

 [1] 周晓峰,杨世锡,甘春标.一种旋转机械振动信号的 盲源分离消噪方法[J].振动、测试与诊断,2012,32
 (5):714-717.

Zhou Xiaofeng, Yang Shixi, Gan Chunbiao. Denoising vibration signal of rotating machinery with blind sources separation[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(5): 714-717. (in Chinese)

- Luisier F, Vonesch C, Blu T, et al. Fast interscale wavelet denoising of Poisson-corrupted images [J].
 Signal Processing, 2010, 90 (2): 415-427.
- [3] Dwivedi U D, Singh S N. Enhanced detection of power-quality events using intra and interscale dependencies of wavelet coefficients[J]. IEEE Transaction on Power Delivery, 2010, 25 (1): 358-366.
- [4] Ranjani J J, Thiruvengadam S J. Dual-tree complex wavelet transform based SAR despeckling using interscale dependency[J]. IEEE Transaction on Image Geoscience and Remote Sensing, 2010, 48 (6): 2723-2731.
- [5] Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IEEE Transaction Information Theory, 1992, 38 (2): 617-643.
- [6] 严鹏,李乔,单德山. 斜拉桥健康监测信号改进小波 相关降噪[J]. 振动、测试与诊断,2012,32(2):317-322.

Yan Peng, Li Qiao, Shan Deshan. Improved wavelet correlation de-noising on cable-stayed bridge health monitoring signal[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32 (2): 317-322. (in Chinese)

[7] 苏文胜, 王奉涛. 双树复小波域隐 Markov 树模型降 噪及在机械故障诊断中的应用[J]. 振动与冲击, 2011, 30 (6): 47-52.

Su Wensheng, Wang Fengtao. Denoising method

based on hidden Markov tree model in dual tree complex wavelet domain and its application inmechanical fault diagnosis[J]. Journal of Vibration and Shock, 2011, 30 (6): 47-52. (in Chinese)

- [8] 张志刚,周晓军,宫燃,等.小波域局部 Laplace 模型 降噪算法及其在机械故障诊断中应用[J].机械工程 学报,2009,45(9):54-57. Zhang Zhigang, Zhou Xiaojun, Gong Ran, et al. Denosing algorithm based on local laplace model in wavelet domain and its application in mechanical fault diagnosis[J]. Journal of Mechanical Engineering, 2009, 45(9):54-57. (in Chinese)
- [9] 张志刚,周晓军,杨富春,等.基于小波系数相关性和局部拉普拉斯模型降噪方法[J].振动与冲击,2008,27 (11):32-36. Zhang Zhigang, Zhou Xiaojun, Yang Fuchun, et al. Denoising coefficient method based on wavelet trnsform correlation and local Laplcian model[J]. Journal of Vibration and Shock, 2008, 27 (11): 32-36. (in Chinese)
- [10] 陈志新,徐金梧,杨德斌. 基于复小波块阈值的降噪 方法及其在机械故障诊断中的应用[J]. 机械工程学 报,2007,43(6):200-204. Chen Zhixin, Xu Jinwu, Yang Debin. Denoising method of block thresholding based on DT-CWT and its application in mechanical fault diagnosis[J]. Journal of Mechanical Engineering, 2007,43(6):200-204. (in Chinese)
- [11] Nelson J D B, Kingsbury N G. Enhanced shift and scale tolerance for rotation invariant polar matching with dual-tree wavelets[J]. IEEE Transaction on Image Processing, 2011, 20 (3): 814-821.
- [12] 李盼池,宋考平,杨二龙. 基于量子门线路的量子神 经网络模型及算法[J]. 控制与决策, 2012, 27 (1): 143-146.
 Li Panchi, Song Kaoping, Yang Erlong. Quantum neural networks model and algorithm based on quantum gates circuit[J]. Control and Decision, 2012, 27 (1): 143-146. (in Chinese)
- [13] 付晓薇,丁明跃. 基于量子概率统计的医学图像增强 算法研究[J]. 电子学报, 2010, 38 (7): 1590-1596.
 Fu Xiaowei, Ding Mingyue. Research on image enhancement algorithms of medical images based on quantum probability statistics [J]. Acta Electronica Sinica, 2010, 38 (7): 1590-1596. (in Chinese)
- [14] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of American Statistical Association, 1995, 90 (432): 1200-1224.

第一作者简介:陈彦龙,男,1987 年 6 月 生,博士研究生。主要研究方向为状态 监测与信号分析。曾发表《DCT 和相关 分析在轴承故障诊断中的应用》(《机械 强度》2013 年第 35 卷第 2 期)等论文。 E-mail:chenyanlong110@163.com