Journal of Vibration, Measurement & Diagnosis

doi:10.16450/j.cnki.issn.1004-6801.2015.01.009

动载荷识别的小波级数分解法阶次确定

杨帆,张方

(南京航空航天大学机械结构力学及控制国家重点实验室 南京,210016)

摘要 在基于正交小波级数分解法的分布动载荷识别过程中,由于小波级数阶次的不适当选择,造成载荷识别的 不准确或计算量庞大。通过矩阵的谱分解,根据 Parseval 定理,信号在时域中的总能量和频域中的总能量是相等 的,给出了随着阶次的增加而趋于收敛的小波级数系数幅值的包络线,将没有确定解析规律的小波级数系数解析 化,得到确定的小波级数阶次与载荷识别相对误差的函数关系。根据实际工程需求的识别误差等级来选取小波级 数的阶次,给出了待识别动载荷级数分解时选择阶次的理论依据。计算机仿真分别采用单频、多频、实际载荷信 号,试验系统采用冲击载荷加载,验证了该定阶方法的正确性和有效性,结果表明定阶理论适用于不同载荷类型。

关键词 载荷识别;级数定阶;小波级数;正交小波基;结构动力学中图分类号 TH113.1;TB123;V214.3;O32;O302;O241.5

引 言

工程结构上的分布动载荷识别方法有很多,其 中正交函数拟合法和小波级数分解法将复杂的分布 动载荷识别转化成正交基函数的系数计算,将复杂 的积分关系转化成分解系数与结构测点响应信息的 线性关系,识别精度高,抗噪性好^[1-7]。正交基函数 的阶次根据经验和有限的响应测量点信息来确 定^[8-9]。当工程实际要求提高精度或因实际条件限 制必须减少响应测量点个数时,只能通过采用条件 循环来控制拟合的阶次,最终达到实际要求^[10],因 此大大降低了运算的效率。

与傅里叶变换相比,小波变换是时间和频率的 局部化聚焦。一些小波函数(如正交 Marr 小波)在 具有和傅里叶变换正交基相同的正交小波基函数的 基础上,同时具有紧支撑性和多分辨率分析等优良 性质。利用 Marr 小波函数是高斯函数的二阶导 数,笔者采用正交 Marr 小波基函数对待识别载荷 进行拟合,通过对随着阶次的增加而趋于收敛的小 波级数系数的观察分析,对频响函数和小波级数系 数矩阵进行谱分解。利用 Parseval 定理和 Cauchy 不等式,给出小波级数系数的高斯包络线的解析形 式,使得小波级数系数的幅值范围在包络线内。用 解析的包络线替代未知的小波级数系数,根据实际 工程对分布动载荷识别误差的需求,确定应该选取 的小波级数的阶次。对工程常见的多频率叠加载 荷,以及具有实际价值的无解析规律的载荷进行计 算机仿真验证,给出不同误差等级所需要的小波级 数分解阶次,识别出的载荷很好地控制在误差等级 范围内。对工程中最常见的冲击载荷进行同样的试 验验证以及相应的仿真比较,结果很好地验证了基 于小波级数分解法的动载荷识别理论以及小波级数 阶次选取理论的正确性和广泛的适用性。

基于小波级数分解的分布动载荷识 别理论

规范 Marr 小波基函数及其傅里叶变换对定 义^[11]为

$$\begin{cases} \varphi(t) = \frac{2}{\sqrt{3\sigma}} \pi^{-\frac{1}{4}} \left(1 - \frac{t^2}{\sigma^2} \right) e^{-\frac{t^2}{2\sigma}} \\ \bar{\varphi}(\omega) = \frac{\sqrt{8}}{\sqrt{3}} \sigma^{\frac{5}{2}} \pi^{\frac{1}{4}} \omega^2 e^{-\frac{\sigma^2 \omega^2}{2}} \end{cases}$$
(1)

其中:φ(t)的形式为高斯函数的二阶导数。

^{*} 国家自然科学基金资助项目(51305197);航空科学基金资助项目(2012ZA52001);高等学校博士学科点专项科研基金 资助项目(20123218120005);江苏高校优势学科建设工程资助项目 收稿日期:2014-05-23;修回日期:2014-06-26

57

以受连续分布动载荷的 Bernoulli-Euler 梁模 型为例,Bernoulli-Euler 梁具有均匀横截面,材料为 匀质,对无限自由度系统,其研究方法与单自由度系 统及多自由度系统的研究方法相同。建立动力学运 动方程^[10]为

$$EI \frac{\partial^4 w}{\partial x^4} + EIc_0 \frac{\partial w}{\partial t} + EIc_1 \frac{\partial^5 w}{\partial t \partial x^4} + \rho A \frac{\partial^2 w}{\partial t^2} = p(x,t)$$
(2)

其中:EI为梁的截面刚度; ρA 为梁单位长度的质量;w即w(x,t)为梁的横向变形; c_0 为梁的外部介质黏性阻尼系数; c_1 为梁的内阻尼系数;p(x,t)为梁所受的分布载荷。

在 x 点激励, k 点的响应的频率响应函数^[10]为

$$H_{xk}(\bar{\omega}) = \sum_{j=1}^{\infty} \frac{\varphi_j(x)\varphi_j(x_k)}{M_j(\omega_j^2 - \bar{\omega}^2 + i2\zeta_j\omega_j\bar{\omega})}$$
(3)

其中: ω_j 为梁的固有频率; ω 为外部激励频率; $\varphi_j(x)$ 为梁振动的固有阵型; ζ_i 为阻尼比。

ζ,和外阻尼、内阻尼系数有如下关系

$$2\zeta_j \omega_j = c_0 \frac{EI}{\rho A} + c_1 \omega_j^2 \tag{4}$$

激励与响应在频域中的关系为

$$X(\omega) = H(\omega)F(\omega) \tag{5}$$

连续激励与任意点 k 响应的关系为

$$\int_{0}^{L} H_{xk}(\omega) F(\omega, x) dx = X_{k}(\omega)$$
(6)

根据式(1),用 Marr 小波对激励力进行拟合

$$F(x) = a_1 \bar{\varphi}_1(x) + a_2 \bar{\varphi}_2(x) + \cdots$$
(7)

其中: $\bar{\varphi}_i(x)(i=1,2,\dots,\infty)$ 为 Marr 小波基函数; $a_i(i=1,2,\dots,\infty)$ 为 Marr 小波系数。

将式(7)代入式(6),得到多点的响应关系式为

$$\int_{0}^{l} \begin{bmatrix} H_{x1} \stackrel{\circ}{\varphi_{1}} & H_{x1} \stackrel{\circ}{\varphi_{2}} & \cdots & H_{x1} \stackrel{\circ}{\varphi_{i}} & \cdots \\ H_{x2} \stackrel{\circ}{\varphi_{1}} & H_{x2} \stackrel{\circ}{\varphi_{2}} & \cdots & H_{x2} \stackrel{\circ}{\varphi_{i}} & \cdots \\ \vdots & \vdots & & \vdots & \\ H_{xn} \stackrel{\circ}{\varphi_{1}} & H_{xn} \stackrel{\circ}{\varphi_{2}} & \cdots & H_{xn} \stackrel{\circ}{\varphi_{i}} & \cdots \end{bmatrix} dx \cdot \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{i} \end{bmatrix} = \begin{bmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{bmatrix}$$
(8)

式(8)有实解的充要条件是测量响应点个数 *n* 不小于小波基函数的阶次 *i*。式(8)记为

$$HA = X \tag{9}$$

对式(9)中 \widetilde{H} 求广义逆计算,得到小波级数系

数矩阵 A,将 A 代入式(7)得到识别的载荷。

2 小波级数分解的阶次确定原则

确定 Marr 小波级数系数 A 的范围。式(8)中 令 i=n,即小波级数阶次等于响应测量点个数。根 据 Marr 小波函数形式,在长度 l 的梁上选取测量点 x_1, x_2, \dots, x_n ,使得 \tilde{H} 实对称。存在正交矩阵 ψ 使 得 \tilde{H} 正交相似于对角矩阵

 $\boldsymbol{\psi}^{\mathrm{T}} \widetilde{\boldsymbol{H}} \boldsymbol{\psi} = \operatorname{diag}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n})$ (10) 其中: $\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}$ 为 $\widetilde{\boldsymbol{H}}$ 的特征值; $\boldsymbol{\psi} = (\boldsymbol{\zeta}_{1}, \boldsymbol{\zeta}_{2}, \dots, \boldsymbol{\zeta}_{n})$ 为 $\widetilde{\boldsymbol{H}}$ 的标准特征向量矩阵。

矩阵 H 的谱分解

$$\widetilde{\boldsymbol{H}} = \boldsymbol{\psi} \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n) \boldsymbol{\psi}^{\mathrm{T}} = \sum_{j=1}^n \lambda_j \boldsymbol{\zeta}_j \boldsymbol{\zeta}_j^{\mathrm{T}} \quad (11)$$

式(9)中,对矩阵 \tilde{H} 求逆得小波级数系数向量A $A = \tilde{H}^{-1}X$ (12)

将式(11)代入式(12),得到

$$\boldsymbol{A} = \left(\sum_{j=1}^{n} \lambda_{j} \boldsymbol{\zeta}_{j} \boldsymbol{\zeta}_{j}^{\mathrm{T}}\right)^{-1} \boldsymbol{X} = \sum_{j=1}^{n} \lambda_{j}^{-1} \boldsymbol{\zeta}_{j} \boldsymbol{\zeta}_{j}^{\mathrm{T}} \boldsymbol{X} \qquad (13)$$

A(t)表示小波系数向量 A 中的第 t 个元素即 a_t,X(t)表示响应测量点向量 X 的第 t 个响应点 X_t,(t=1,2,...,n),得到式(13)的离散形式为

$$\boldsymbol{A}(t) = \sum_{j=1}^{n} \lambda_{j}^{-1} \boldsymbol{\zeta}_{j} \boldsymbol{\zeta}_{j}^{\mathrm{T}} \boldsymbol{X}(t)$$
(14)

对 A(t)作 Fourier 变换,得

$$\boldsymbol{A}(\boldsymbol{\omega}) = \int_{-\infty}^{+\infty} \boldsymbol{A}(t) e^{-j\boldsymbol{\omega}t} dt = \int_{-\infty}^{+\infty} \sum_{j=1}^{n} \lambda_{j}^{-1} \boldsymbol{\zeta}_{j} \boldsymbol{\zeta}_{j}^{\mathrm{T}} \boldsymbol{X}(t) e^{-j\boldsymbol{\omega}t} dt$$
(15)

根据 Parseval 定理,时域的总能量应等于频域的总能量

$$\int_{-\infty}^{+\infty} \mathbf{A}^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |\mathbf{A}(\boldsymbol{\omega})|^{2} d\boldsymbol{\omega} \qquad (16)$$

将式(15)代人式(16),根据 Cauchy 不等式得

$$\mathbf{A}(t) \leqslant \left| \mathbf{P}(t) \right| e^{-t^2/Q(t)}$$
(17)

$$\begin{cases} \mathbf{P}(t) = \frac{1}{\sqrt{2\pi}} \left(\sum_{j=1}^{\infty} \boldsymbol{\zeta}_{j} \boldsymbol{\zeta}_{j}^{\mathsf{T}} \right)_{\max} f_{\max} \\ \mathbf{Q}(t) = \sqrt{\frac{8}{3}} tr \widetilde{\boldsymbol{H}}(t) \end{cases}$$
(18)

其中: $(\sum_{j=1}^{\infty} \zeta_j \zeta_j^{T})_{max}$ 为特征向量矩阵中绝对值最大元 素; f_{max} 为被拟合函数的最高频率成分; $tr \widetilde{H}(t)$ 为矩 阵 $\widetilde{H}(t)$ 的迹。

式(17)中不等式右边的 $|P(t)| e^{-t^2/Q(t)}$ 为小波

级数系数的高斯包络线,且小波系数包络线的收敛 速度低于小波系数的收敛速度。用高斯包络线 $|P(i)|e^{-i^2/Q(i)}$ 取代第*i*阶的小波系数 a_i 。式(7) 中,原始载荷幅值可表示为

$$F_{\text{original}} = \sum_{j=1}^{\infty} a_j \bar{\varphi}_j (x) = S_{1i} + S_{i\infty} \qquad (19)$$

其中: $S_{1i} = \sum_{j=1}^{i} a_j \bar{\varphi}_j(x)$ 为识别载荷 $F_{\text{identified}}$; $S_{i\infty} = \sum_{j=i}^{\infty} a_j \bar{\varphi}_j(x)$ 为载荷识别的绝对误差。

根据式(17)的收敛速度,得到

$$S_{i\infty} = \sum_{j=i}^{\infty} a_{j} \overline{\varphi}_{j}(x) \leqslant \sum_{j=i}^{\infty} | \boldsymbol{P}(j) | e^{-j^{2}/Q(j)} \overline{\varphi}_{j}(x) = \widetilde{S}_{i\infty}$$
(20)

如果工程动载荷识别相对误差的数量级要求为

不大于
$$\varepsilon$$
,即 $\left|\frac{F_{\text{identified}} - F_{\text{original}}}{F_{\text{original}}}\right| \leqslant \varepsilon$,得到
$$\left|\frac{\int_{0}^{l} \widetilde{S}_{i\infty} \, \mathrm{d}x}{\int_{0}^{l} F_{\text{original}}(x) \, \mathrm{d}x}\right| \leqslant \varepsilon$$
(21)

Fig. 1 Result of wavelet series fitting with 12 orders

根据式(21)来确定阶次*i*的取值。一般的,当 误差精度等级越高,阶次*i*值越大。

3 仿真验证

通过计算机仿真对以上理论进行验证。以受连续分布动载荷的 Bernoulli-Euler 梁为仿真模型。 梁的各参数设定为: $\rho A = 1 \text{ kg/m}, \bar{\omega} = 60 \text{ Hz},$ $EI = 0.256 649 556 2 \text{ Nm}^2, l = 1, 内阻尼系数 c_1 = 0.1, 外阻尼系数 c_0 = 0。$

3.1 外激励为多频率叠加信号的识别

外激励形式如 $p(x,t) = f(x) \sin(\bar{\omega}t) = [\sin(2\pi f_1 x) + \sin(2\pi f_2 x) + \sin(2\pi f_3 x)]\sin(\bar{\omega}t),$ $f_1 = 5 \text{ Hz}, f_2 = 10 \text{ Hz}, f_3 = 15 \text{ Hz}, 采用不同阶次$ Marr 小波级数拟合的识别载荷与真实载荷的对比 和相对误差如图 1~3 所示。响应信息带 10%噪声 的识别效果如图 4 所示。图 5 和图 6 分别给出了 100 阶 Marr 小波级数系数(无噪声和带 10%随机噪 声)的趋向。不同阶次的载荷识别误差数据见表 1。

Fig. 2 Result of wavelet series fitting with 23 orders

图 3 49 阶小波级数拟合结果

Fig. 5 The tendency of wavelet series coefficient in fitting multi-frequency load signal

3.2 外激励为实际载荷信号的识别

外激励 $p(x,t) = f(x)\sin(\bar{\omega}t)$,其中:f(x)为带随机噪声的实际载荷。实际外激励的幅值如图 7 所示。当载荷识别的误差等级 ϵ 要求控制在 1% ~ 10%时,根据式(21)得到小波级数分解的阶次 i =

Fig. 4 Result of wavelet series fitting with 12 orders (with 10% noise)

ting multi-frequency load signal (with 10% noise)

52,计算得到的载荷识别幅值与原始载荷幅值对比 及相对误差如图 8 所示。最大误差为 17.51%,平 均误差为 1.19%,最大误差的位置在 *x*=0.930 m。 Marr 小波级数系数趋向如图 9 所示。 表 1 多频率叠加载荷信号识别的阶次选取及识别结果

 Tab. 1
 Order selection and identification results in fitting

multi-frequency load signal						
灾际工把重步	载荷识别	载荷识别	识别最大	Marr 小波		
误差等级	最大误差	平均误差	误差出现	级数拟合		
	/ %	/ %	的位置/m	阶次		
$1\% \sim 10\%$	7.23	3.07	0.188	12		
0.1%~1%	0.73	0.24	0.031	23		
$0.01\% \sim 0.001\%$	0.76	0.04	0.750	49		
1%~10% (含10%随机噪声)	10.59	8.49	0.542	12		

图 9 实际载荷信号的小波级数系数趋向 Fig. 9 The tendency of wavelet series coefficient in fitting real load signal

需要指出的是:在有噪声扰动的情况下,识别出 的小波系数有可能会出现波动,甚至会超出小波系 数包络线,此时可根据噪声扰动对小波系数包络线 进行修正,使小波系数包络线的收敛速度低于小波 系数的收敛速度。

4 试验验证

在两端自由的 Bernoulli-Euler 梁上,参数设定 同仿真验证中的参数一致。外激励为作用在 $x_0 =$ 0.32 m的冲击载荷,形式为 $p(x,t) = f(x,t)\delta(x - x_0)$,其中, δ 为单位脉冲函数。在工程实际中,冲击 载荷的时间历程可近似用典型波形-半正弦波形^[12] 来代替

$$f(t) = \begin{cases} P\sin\frac{\pi t}{\tau} & (0 \leqslant t \leqslant \tau) \\ 0 & (t > \tau) \end{cases}$$
(22)

其中:参数 *P* 与τ分别表示冲击载荷的幅值和持续 时间。

建模过程中冲击载荷由脉冲力锤产生,冲击载 荷信号用力传感器测量,梁上均匀布置4个加速度 传感器以测量加速度响应,所有测量信号由 NI 公 司开发的 signal express 分析仪和 PXI 采集卡进行 采集和处理,结构试验系统如图 10 所示。

根据 Bernoulli-Euler 梁上小波级数分解法的 分布动载荷时域识别理论^[13],对冲击载荷幅值 *f*(*t*) 进行小波级数分解。当载荷识别的误差等级 ε 要求 控制在 1%~10%时,根据式(21)得到小波级数分 解的阶次 *i* 为 36 阶,识别冲击载荷与测量冲击载荷 的时间历程如图 11 所示。小波级数系数趋向如图

- 图 10 两端自由 Bernoulli-Euler 梁载荷识别试验系统
- Fig. 10 Load identification lab system on free Bernoulli-Euler beam

14 所示。相同参数设定的计算机仿真识别效果如 图 12,13 和表 2 所示。

冲击载荷时间历程的试验识别结果

Fig. 11 Lab identification results of impact load in time history

in time history

Fig. 13 The tendency of wavelet series coefficient in fitting impact load signal

Tab. 2 Simulation identification results of impact load signal in time history

项目	测量	识别	相对误差/%
冲击载荷幅值	88.49 N	90.55 N	2.33
冲击载荷持续时间	0.236 ms	0.230 ms	2.54

图 13 验证了冲击载荷识别的时间历程与实测 时间历程能够较好地吻合,本研究的小波阶次选取 理论计算出的冲击载荷与真实冲击载荷的相对误差 满足工程需求的相对误差等级 $\epsilon = 1\% \sim 10\%$,如表 3 所示。

冲击载荷信号的小波级数系数趋向(试验) 图 14 Fig. 14 The tendency of wavelet series coefficient in fitting impact load signal

Tab. 3 Lab identification results of impact load signal in time history

项目	测量	识别	相对误差/%
冲击载荷幅值	88.20 N	91.43 N	3.66
冲击载荷持续时间	0.250 ms	0.232 ms	7.20

5 结束语

正交小波基函数和正交多项式函数对信号进行 拟合时,阶次的确定一直是实际工程研究的难题。 当拟合阶次过少,会产生拟合精度过低,在求解方程 组时对小扰动非常敏感;当拟合阶次过多,需要更多 的响应测量点;根据条件循环控制来选取拟合阶次 则会大大降低计算的效率。笔者根据基于正交小波 级数分解法的 Bernoulli-Euler 梁的分布动载荷识 别过程的小波系数的规律特点,给出小波系数包络 线,小波级数拟合的阶次根据实际需求的载荷识别 相对误差等级来确定。

计算机仿真验证了在有噪声干扰的情况下,采 用本研究工作的理论确定的拟合阶次同样能够满足 实际需求的载荷识别相对误差范围。试验过程验证 了针对不同的载荷类型,本研究工作的定阶理论同 样适用。

参考文献

- Li Zong, Feng Zhipeng, Chu Fulei. A load identification method based on wavelet multi-resolution analysis
 [J]. Journal of Sound and Vibration, 2014,333: 381-391.
- [2] 张方,唐旭东,秦远田,等.结构连续分布的动态随机 载荷识别方法研究[J].振动与冲击,2006,25(2): 120-124.

Zhang Fang, Tang Xudong, Qin Yuantian, et al. The identification method research of dynamic random load distributing on structure[J]. Journal of Vibration and Shock, 2006,25(2):120-124. (in Chinese)

- [3] 张勇成. 二维分布动载荷时域识别技术[D]. 南京:南 京航空航天大学,2007.
- [4] 秦远田.分布动载荷识别的二维小波-伽辽金方法[J].振动、测试与诊断,2012,32(6):1005-1009.
 Qin Yuantian. Two-dimension wavelet-galerkin method for distributed load identification[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(6): 1005-1009. (in Chinese)
- [5] 李臣,马爱军,冯雪梅. 一种高效的频域模态参数识别 法[J]. 振动与冲击,2004,23(3):128-131.

Li Chen, Ma Aijun, Feng Xuemei. Efficient method for identification of modal parameters in frequency domain[J]. Journal of Vibration and Shock, 2004, 23 (3):128-131. (in Chinese)

- [6] 王彦卫,赵玫. 一种新的动态载荷识别方法[J]. 噪声 与振动控制,2003,3:11-13.
 Wang Yanwei, Zhao Mei. A novel force identification method based on spline approximation[J]. Noise and Vibration Control, 2003,3:11-13. (in Chinese)
- [7] 秦远田,陈国平,张方. 二维分布动载荷识别的矩量方法[J]. 振动、测试与诊断,2012,32(1):34-41.
 Qin Yuantian, Chen Guoping, Zhang Fang. Moment method of two-dimension on distributed load identification[J]. Journal of Vibration, Measurement & Diagnosis, 2012,32(1):34-41. (in Chinese)
- [8] Zhang Yongxin, Chen Li, Jia Jian, et al. A new approach for optimal decomposition level selection in wavelet de-noising[J]. Applied Mechanics and Materials, 2013,333-335(7):540-545.
- [9] Tugnait J K, Liu E. Model validation and order selection for linear model fitting using third- and fourth-order cumulants[J]. IEEE Transactions on Signal Processing, 1999,47(9):2433-2443.
- [10] 张方,秦远田.工程结构动载荷识别方法[M].北京:国 防工业出版社,2011:33-41,72-74.
- [11] Mallat S. A wavelet tour of signal processing[M]. California: Academic press,1999:269.
- [12] Harris C M. Shock and vibration handbook[M]. New York: McGraw-Hill, 2002:270-271.
- [13] 杨帆,张方. 基于小波级数分解法的动载荷识别研究 [J]. 清华大学学报:自然科学版,2013,53(8):1166-1171.

Yang Fan, Zhang Fang. Identification of dynamic force based on wavelet series decomposition[J]. Journal of Tsinghua University: Natural Science, 2013, 53 (8):1166-1171. (in Chinese)

第一作者简介:杨帆,男,1983 年 11 月 生,博士研究生。主要研究方向为小波 动载荷识别。曾发表《基于小波级数分 解法的动载荷识别研究》(《清华大学学 报:自然科学版》2013 年第 53 卷第 8 期) 等论文。

E-mail:13851791924@163.com