Journal of Vibration, Measurement & Diagnosis

doi:10.16450/j.cnki.issn.1004-6801.2015.04.027

铣刀磨损对铣削稳定性及表面位置误差的影响

吴 石, 刘献礼, 宋盛罡, 渠 达

(哈尔滨理工大学机械动力工程学院 哈尔滨,150080)

摘要为了分析刀具正常磨损后铣削颤振稳定域和表面位置误差,对刀具不同磨损状态下的切削力系数进行辨 识,基于全离散法研究刀具正常磨损后铣削颤振稳定域和表面位置误差特性。发现当刀具正常磨损后,铣削系统 的稳态临界切深呈现上升的趋势;随着工件表面洛氏硬度的提高,铣削系统稳态临界切深逐步下降,刀具正常磨损 后临界切深与后刀面无磨损临界切深的差别逐步变小;在稳定域的局部会出现表面位置误差增加的情况。试验表 明,该理论模型可以有效优化刀具正常磨损后的加工参数。

关键词 铣刀磨损; 全离散法; 稳定域; 表面位置误差 中图分类号 TH161; TB122; TG506

引 言

球头铣刀广泛应用于模具型腔表面及其他具有 复杂成形表面的产品,是数控加工各种曲率变化或 很陡曲面的重要刀具。从铣削稳定域预测、颤振控 制和加工精度为目的的研究角度出发,在刀具出现 磨损的情况下,准确地进行切削动态稳定性预测,防 止刀具发生颤振,预防不稳定切削对模具加工精度 和产品质量的影响。同时,高速铣削过程即使不发 生颤振,加工过程磨损刀具的受迫振动也会影响工 件的加工精度,主要影响表面位置误差(surface location error,简称 SLE)^[1]。

加工中刀具的动态磨损是影响加工精度的一个 重要因素。刀具磨损产生的机理较复杂,影响因素 较多,很难建立一个准确适用的刀具磨损理论模型, 一般多基于试验方法进行研究^[2-4]。李锡文等^[5]基 于后刀面磨损带面积建立螺旋立铣刀后刀面瞬时铣 削力和平均铣削力数学模型,根据试验方法得到后 刀面法向力系数和切向力系数来预测刀具不同磨损 状态。张臣等^[6]通过分析影响球头铣刀刀具磨损的 几何加工参数,利用线性多因素回归法建立了球头 刀具轴线磨损量模型和径向磨损量模型。文献[7-8]提取与刀具磨损量最相关的切削力和振动信号等 作为等特征向量,然后基于隐性马尔可夫模型或超 球面支持向量机进行刀具磨损状态识别。上述研究 内容基本局限于磨损量的预测,所建立的刀具磨损 模型大多是以在线监测刀具磨损状态为目的,而对 球头铣刀磨损模型的建立、磨损后的切削稳定性以 及刀具磨损产生的动态加工误差等研究较少。

笔者为研究刀具磨损情况下的切削稳定性及同 步表面位置误差预测,以球头铣刀为研究对象,首 先,利用切削力系数度量球头铣刀切削刃磨损量,基 于正交切削辨识球头铣刀切削系数,分析切削力系 数与刀具后刀面磨损量的相关性;然后,根据铣削过 程动力学模型,基于全离散法预测多工艺参数耦合 的稳定域边界和同步表面位置误差。目前,同步预 测稳定域和表面位置误差的主要方法有时域有限元 分析法[9-11]和全离散法。铣削过程稳定性分析中全 离散法打破了经典微分方程框架,在积分方程框架 下描述出了铣削过程动力学的时滞积分方程。全离 散法是继时域有限元分析法后第2个能同步预报铣 削稳定性与表面位置误差的半解析方法,与目前国 际通用的半离散法相比,在保证数值精度的前提下, 能够有效提高计算速度[12]。研究结果对高速铣削 加工淬硬钢模具的推广应用具有理论和实际指导 意义。

^{*} 国家自然科学基金重点资助项目(51235003) 收稿日期:2014-09-07;修回日期:2014-11-15

1 不同磨损阶段的铣削力系数

刀具的磨损形式主要包括前刀面磨损、后刀面磨 损及边界磨损。研究表明,在切削时引起的刀具磨损 主要是后刀面磨损。随着后刀面磨损带宽度的增加, 作用在铣刀后刀面上的切削力因后刀面与工件间接 触面积的增大而增大,而作用在铣刀前刀面上的切削 力保持不变[13]。根据磨损曲线,可以将刀具磨损失 效过程分为3个阶段:初始磨损、正常磨损及急剧磨 损。假设新刀的后刀面磨损带量为零,轻微磨损的后 刀面磨损量为 26.86 um(大约切削 10 min 左右),刀 具磨损的具体情况如图1所示。试验同型号刀具的 后刀面磨损随时间变化情况如图 2 所示,后刀面磨损 量为 26.86 µm 时,刚刚进入正常磨损区间,根据刀具 不同的磨损阶段,分别计算铣削力模型的系数,包括 切向、径向、轴向剪切铣削力系数(K_{tc},K_{rc},K_{ac})和切 向、径向、轴向犁耕铣削力系数(K_{te},K_{re},K_{ae})。切削 力系数根据 Gradisek^[14]方法进行铣槽试验,通过平均 铣削力计算铣削力系数。

图 1 刀具磨损的具体情况 Fig. 1 The specific situation of tool wear

Fig. 2 The wear situation of tool flank

在铣削力系数的测试过程中,机床为 VDL-1000E型三轴立式加工中心,刀具为山特维克整体 硬质合金球头立铣刀(R216.64-08030-AO09G 1610),直径为8 mm,螺旋角为 30°的四刀硬质合金 球头铣刀,工件材料为不同洛氏硬度的淬硬钢 (59HRC,49HRC,45HRC)。针对不同硬度材料、 新刀、轻微磨损刀具,这6种情况分别采用相同切削 参数进行铣槽试验,即轴向切削深度分别为0.1,0. 2,0.3,0.4 mm,进给速度分别为500,1000,1500 mm/min,转速为4000 r/min。平面干切削每种情 况共进行12组试验,每组试验重复3次取平均值得 到平均铣削力。测力仪型号为Kistler9257B,传感 器选用 PCB 加度传感器,灵敏度为10.42 mV/g,电 荷放大器型号为Kistler5007;数据采集分析系统采 用东华 DH5922 信号采集系统,切削力测试系统如 图3所示。传感器布置和模态测试如图4所示。铣 削系统模态特性通过锤击试验获得,如表1所示。 铣削力系数如表2所示。

图 3 铣削力系数测量系统

Fig. 3 Measurement system for milling force coefficient

图 4 传感器的布置和模态测试图 Fig. 4 The specific layout of sensors and modal test

表 1 球头铣刀的模态特性 Tab. 1 Modal characteristics of ball-end milling cutter

m_t/kg	ζ	$K/(N \cdot mm^{-1})$	ω/Hz
0.001 72	0.038 6	536	1 282

2 基于全离散法的颤振稳定域预测

切削过程颤振分为再生型颤振和模态耦合型颤振,一般认为再生型颤振先于模态耦合型颤振发生。 笔者基于全离散法来预报铣削稳定性和表面位置误 差。具有对称动力学参数的两自由度铣削动力学模 型^[15]为

表 2 球头铣刀铣削力系数 Tab. 2 Milling force coefficients of ball-end milling cutter

工件表面	球头铣刀	$K_{ m tc}/$	$K_{ m rc}/$	$K_{ m ac}$ /	$K_{ m tp}$ /	$K_{ m rp}$ /	$K_{ m ap}$ /
硬度	后刀面磨损情况	$(N \cdot mm^{-2})$					
59HRC	后刀面磨损量为0 mm ²	-4 296.0	2 171.6	2 111.2	-180.5	30.1	188.9
	后刀面轻微磨损	-5 208.9	4 985.8	10 020.0	-975.0	576.0	1 635.6
49HRC	后刀面磨损量为0 mm ²	-3 556.4	1 379.6	1 986.9	-95.7	34.7	72.6
	后刀面轻微磨损	-4 174.2	4 046.2	4 681.7	-908.4	404.2	1 387.3
45HRC	后刀面磨损量为0 mm ²	-3487.1	1 083.6	1 562.4	-102.5	28.3	63.4
	后刀面轻微磨损	-3 991.1	3 760.0	3 238.6	-840.5	226.3	1 018.1

$$\begin{bmatrix} m_t & 0 \\ 0 & m_t \end{bmatrix} \begin{bmatrix} \dot{x}(t) \\ \ddot{y}(t) \end{bmatrix} + \begin{bmatrix} 2m_t \xi \omega_n & 0 \\ 0 & 2m_t \xi \omega_n \end{bmatrix} \begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix} + \begin{bmatrix} -a_p h_{11}(t) & -a_p h_{12}(t) \\ -a_p h_{21}(t) & -a_p h_{22}(t) \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} + \begin{bmatrix} a_p h_{11}(t) \\ a_p h_{21}(t) \end{bmatrix}$$

其中: m_i 为铣削系统的模态质量; ζ 为铣削系统的阻 尼比; ω_n 为铣削系统的固有频率; a_p 为轴向铣削深 度; $h_{ij}(t)$ 为时变铣削力系数;i,j=1,2。

$$\begin{cases} h_{11}(t) = \sum_{j=0}^{N-1} -g_{j} [k_{i} \sin 2\varphi_{j} + k_{r} (1 - \cos 2\varphi_{j})] \\ h_{12}(t) = \sum_{j=0}^{N-1} -g_{j} [k_{i} (1 + \cos 2\varphi_{j}) + k_{r} \sin 2\varphi_{j}] \\ h_{21}(t) = \sum_{j=0}^{N-1} g_{j} [k_{i} (1 - \cos 2\varphi_{j}) - k_{r} \sin 2\varphi_{j}] \\ h_{22}(t) = \sum_{j=0}^{N-1} g_{j} [k_{i} \sin 2\varphi_{j} - k_{r} (1 + \cos 2\varphi_{j})] \end{cases}$$

$$(2)$$

其中: $\varphi_j(t)$ 为刀齿 j的位置角度; $\varphi_j = \omega t + j(2\pi/N), j=0,1,2, \dots, N-1; N$ 为铣刀齿数; k_i 为切向 铣削力系数; k_r 为径向铣削力系数; g_j 为刀齿的有 效切削区函数。

将质量矩阵、阻尼系数矩阵和刚度矩阵分别表示为 M, C 和 K,并设 $[x(t), y(t)]^{T} = q(t), p(t) = Mq + Cq/2, R(t) = [q(t), p(t)]^{T}, 通过柯西变换, 两自由度铣削动力学模型的状态空间形式^[16-17]为$

$$\dot{\mathbf{R}}(t) = \mathbf{A}_0 \mathbf{R}(t) + \mathbf{A}(t) \mathbf{R}(t) + \mathbf{B}(t) \mathbf{R}(t-T) \quad (3)$$

$$\begin{split} \not{\Xi} \dot{\Psi} : \mathbf{A}_{0} &= \begin{bmatrix} -\mathbf{M}^{-1}\mathbf{C}/2 & \mathbf{M}^{-1} \\ \mathbf{C}\mathbf{M}^{-1}\mathbf{C}/4 - \mathbf{K} & \mathbf{C}\mathbf{M}^{-1}/2 \end{bmatrix}; \\ \mathbf{A}(t) &= \begin{bmatrix} 0 & 0 \\ -a_{p}h_{11} & -a_{p}h_{12} \\ -a_{p}h_{21} & -a_{p}h_{22} \end{bmatrix}; \\ \mathbf{B}(t) &= \begin{bmatrix} 0 & 0 \\ a_{p}h_{11} & -a_{p}h_{12} \\ -a_{p}h_{21} & -a_{p}h_{22} \end{bmatrix} ^{\circ} \\ \end{bmatrix}$$

将刀具一转的时间 T 等同于时滞量,将时滞时

$$\begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix} + \begin{bmatrix} m_t \omega_n^2 & 0 \\ 0 & m_t \omega_n^2 \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \\ + \begin{bmatrix} a_p h_{11}(t) & a_p h_{12}(t) \\ a_p h_{21}(t) & a_p h_{22}(t) \end{bmatrix} \begin{bmatrix} x(t-T) \\ x(t-T) \end{bmatrix}$$
(1)

间 T 等距离离散为 m 个时间段,即 T = mτ。根据 精细积分法^[18-19],通过线形逼近和根据 Floquet 理 论,求得系统的稳定性可由转移矩阵的特征值决定。 若转移矩阵的所有特征值的模均小于 1,则系统稳 定^[19]。具体研究步骤根据单自由度铣削动力学模 型进行^[17]。

根据球头铣刀后刀面磨损情况不同,铣削力系 数不同,分别建立铣削系统颤振二维稳定域图,如 图 5,6 所示。从图 5 看出,后刀具面轻微磨损时,对 于工件不同的表面洛氏硬度(45,49,59HRC)铣削 系统的稳态临界切深呈现上升的趋势;在主轴高转 速的区域,后刀具面轻微磨损的稳态临界切深较后 刀面无磨损的稳态临界切深要大的多;洛氏硬度为 59HRC时,刀具轻微磨损对稳定域影响较小;洛氏 硬度为 45,49HRC时,刀具轻微磨损对稳定域影响 较大。从图 6可以看出,随着工件表面硬度的提高, 铣削系统稳态临界切深逐步下降,刀具轻微磨损后 临界切深与后刀面无磨损临界切深的差别逐步变 小;切削在不同硬度工件时,后刀面如果无磨损在 6.5~7.0 kr/min 间有 hof 分叉叶瓣。

3 基于全离散法的动态加工误差同步 预报

在考虑铣削系统颤振稳定域同时,应同时考虑 在稳定域内铣削的表面位置误差,即铣削系统颤振 稳定域和表面位置误差同步预报。计算表面位置误 差,即考虑振动诱导的动态加工误差^[20],需要考虑 动力学方程的静态项,即

 $\dot{x}(t) = \mathbf{A}_0 x(t) + \mathbf{A}(t) x(t) - \mathbf{A}(t) x(t - T) + \mathbf{f}(t)$

(4)

图 5 考虑后刀面磨损程度时铣削系统颤振二维稳定域

Fig. 5 The chatter stability of milling system by considering the degree of tool flank wear

图 6 考虑铣削不同硬度工件时铣削系统颤振二维稳定域

Fig. 6 The chatter stability of milling system by considering the different hardness of workpiece

其中:
$$A_0 = \begin{bmatrix} -M^{-1}C/2 & M^{-1} \\ CM^{-1}C/4 - K & CM^{-1}/2 \end{bmatrix}$$
; A(t) =

$$\begin{bmatrix} 0 & 0 \\ aK_{c}(t) & 0 \end{bmatrix}; \boldsymbol{f}(t) = \begin{bmatrix} 0 & 0 \\ af_{0}(t) & 0 \end{bmatrix}; \boldsymbol{f}$$
 为进给率。

将刀具一转的时间 T 等同于时滞量,将时滞时 间 T 等距离离散为 m 个时间段,即 T=mτ,τ 为采 样周期,m 为正整数,通过线形逼近可得如下离 散^[17]形式

$$x_{k+1} = [\mathbf{I} - \mathbf{F}_{k+1}]^{-1} (F_0 + F_{0,k}) x_k + [\mathbf{I} - \mathbf{F}_{k+1}]^{-1} F_{m-1} x_{k+1-m} + [\mathbf{I} - \mathbf{F}_{k+1}]^{-1} F_m x_{k-m} + [\mathbf{I} - \mathbf{F}_{k+1}]^{-1} G_k$$
(5)

若 $[I - F_{k+1}]^{-1}$ 奇异,则可用该矩阵的广义逆代 替对其求逆。使用扩展的状态向量 $y_k = col(x_k, x_{k+1}, \dots, x_{k+1-m}, x_{k-m}), y_k$ 为n(m+1)维向量,构造 如下离散映射

$$y_{k+1} = \boldsymbol{D}_k \boldsymbol{y}_k + \boldsymbol{E}_k \boldsymbol{G}_k \tag{6}$$

其中: $D_k =$

$ \left[\left[I - F_{k+1} \right]^{-1} (F_0 + F_{0,k}) \right] \cdots \left[I - F_{k+1} \right]^{-1} F_{m-1} \right] $	$[I-F_{k+1}]^{-1}F_m$
I 0 0	0
0 I 0	0 ;
	:
0 0 ··· I	0
$E_k = \operatorname{col}([I - F_{k+1}]^{-1}, 0, \cdots, 0); F_0 = C_k$	φ_0 ; $G_k = \varphi_1 f_0^{(k)}$
$+ \varphi_2 f_1^{(k)}; f_0^{(k)} = f_{k+1}; f_1^{(k)} = (f_k - f_k)$	$(\tau_{2+1})/\tau; F_{0,k} =$
$\left(\frac{\varphi_2}{\tau}\right)A(t)_0^{(k)} + \left(\frac{\varphi_3}{\tau}\right)A(t)_1^{(k)}; F_{k+1} = \left(\varphi_1\right)$	$\left(t\right)_{0}^{(k)} = \frac{\varphi_2}{\tau} A(t)_{0}^{(k)}$
$+\left(\varphi_{2}-\frac{\varphi_{3}}{\tau}\right)A(t)_{1}^{(k)};F_{m-1}=-F_{k+1};F_{m-1}=-F_{k+1}$	$\Gamma_m = -F_{0,k}$;矩
$\not \mathbf{E} \boldsymbol{\varphi}_0 = e^{\mathbf{r} A_0} \boldsymbol{;} \boldsymbol{\varphi}_1 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{A}_0^{-1} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{\varphi}_0 - \boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{I} \left(\boldsymbol{I} \right) \boldsymbol{;} \boldsymbol{\varphi}_2 = \boldsymbol{I} \left(\boldsymbol{I} \right) \boldsymbol{;} $	$\sigma_0^{-1}(\tau \boldsymbol{\varphi}_0 - \boldsymbol{\varphi}_1);$
$\boldsymbol{\varphi}_3 = \boldsymbol{A}_0^{-1}(\tau^2 \boldsymbol{\varphi}_0 - 2\boldsymbol{\varphi}_2); \boldsymbol{A}(t)_0^{(k)} = \begin{bmatrix} aK_0^{(k)} \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ t^{(k+1)}(t) & 0 \end{bmatrix};$
$\mathbf{A}(t)_{1}^{(k)} = \frac{(\mathbf{A}(t)_{0}^{k} - \mathbf{A}(t)_{0}^{k+1})}{\tau}; K_{c}^{k+1} $	云在 k +1 时

刻下 K_c,具体见文献[17]。

系统在单个时间周期上的状态转移矩阵关系可 以通过矩阵序列 D_k , E_k , G_k , $(k=0,1,\dots,m-1)$ 构 造出来,即

$$y_m = \boldsymbol{\varphi} \boldsymbol{y}_0 + G \tag{7}$$

其中:状态转移矩阵 $\boldsymbol{\varphi}$ 被定义为 $\boldsymbol{\varphi} = D_{m-1} D_{m-2} \cdots$ $D_1 D_0; G = E_{m-1} G_{m-1} + \sum_{i=0}^{m-2} (D_{m-1} D_{m-2} \cdots D_{i+1} E_i G_i).$

对于多周期情况,第 *l* 周期和第 *l*-1 周期的离散动态映射可从式(6)得到,即

$$y_l = \varphi y_{l-1} + G \tag{8}$$

在稳态铣削时,稳态系数向量 $y_i = y_{i-1} = y_i^* = (I - \varphi)^{-1}G$,表面位置误差可以从稳态系数向量中

获取相应的稳态振动解 $q_t^*(t) = [x(t)^*, y(t)^*]^T$ 。 根据 Insperger 等^[9,10,21]定义的 SLE,第 j 刀齿的稳 定振动运动轨迹为

$$s_{l}(t) = \begin{bmatrix} \mathbf{x}^{*}(t) \\ \mathbf{y}^{*}(t) \end{bmatrix} + \frac{D}{2} \begin{bmatrix} \sin(\varphi_{j}(t)) \\ \cos(\varphi_{j}(t)) \end{bmatrix} + \begin{bmatrix} ft \\ 0 \end{bmatrix}$$
(9)

表面位置误差表示为

$$SLE = \max(s_y(t)) - D/2 \tag{10}$$

当表面洛氏硬度为 59HRC,轴向切深 $a_p =$ 0.6 mm时,根据后刀面有无轻微磨损(其切削力系数不同),预报表面位置误差,如图 7 所示。可以看出,刀具轻微磨损后低转速的动态误差几乎为零,只是在高转速是动态误差增长的较快。从图 7(a)可以看出,在刀具无磨损时,转速在 6.0,7.8,9.5 kr/min等附近出现表面位置误差急剧增加的趋势。从图 7(b)可以看出,在转速为 9.5 kr/min 时,表面位置误差开始急剧变化。

ing the degree of tool flank wear

4 试验及分析

由于刀具转速和切深是影响铣削稳定性的两个 较主要数据,通过测试系统在不同工艺参数下获得 工件振动加速度信号,采样频率为 10 kHz。工件表 面洛氏硬度为 45HRC 时,共进行 12 组试验,每组 采用两种刀具,一种后刀面有轻微磨损(开始测试时 后刀面磨损量为 26.86 μm)和一种后刀面无磨损, 转速分别为 3.5,4.0,4.5,5.0,5.5,6.0 kr/min,切 深 *a_p* 分 别 为 0.4,0.6 mm,每 齿 进 给 量 为 0.15 mm。

如图 8 所示,当转速为 4 kr/min、切深为 0.4 mm时,转速在 5 kr/min、切深为 0.4,0.6 mm 时,工件振动较小,振幅为 5 mm/s² 左右。如图 8 (c)所示,该工况下铣削稳定无颤振,工件表面质量 较好。通过傅里叶变换发现能量在刀具转动频率附 近,能量分布均匀。

Fig. 8 The experiment analysis of milling chatter stability

当转速在 3.5,4.5,5.5,6.0 kr/min, 切深为 0.6 mm时,工件出现明显振动,最大振幅达到 16.7 mm/s²左右,如图 8(b)所示,该工况下铣削不 稳定有颤振,工件表面质量较差。通过傅里叶变换 发现能量向刀具结构频率附近积聚,且能量增大 很多。当转速在 3.5,4.0,4.5,5.5,6.0 kr/min,切 深为0.4 mm时,工件出现轻微颤振,最大振幅为 12.6,14.6 mm/s² 左右,刀具无磨损的时域振动信 号如图 8(d)所示。刀具轻微磨损的时域振动信号 分析如图 8(e)所示,刀具轻微磨损的时域振动信号 略大。当后刀面有轻微磨损,转速在4.0,6.5 kr/ $\min,$ 切深 $a_p=0.4$ mm时,工件表面的质量如图 9 所示,符合预测的规律。根据刀具正常磨损后铣削 颤振稳定域和表面位置误差模型,可以初步优化刀 具正常磨损后的加工参数。

(b) Spindle speed n = 6.5 kr/min

图 9 稳定域内工件表面(切深 a_p=0.4 mm) Fig. 9 The workpiece surface in the stability region (The depth of cut $a_p = 0.4$ mm)

结 论 5

1) 不同磨损状态下的切削力系数不同;刀具后 刀面轻微磨损后,铣削系统的稳态临界切深呈现上 升的趋势;随着工件表面硬度的提高,铣削系统稳态 临界切深逐步下降,刀具轻微磨损后临界切深与后 刀面无磨损临界切深的差别逐步变小。

2) 在局部稳定域会出现表面位置误差增加的

情况,刀具轻微磨损后,低转速的动态误差几乎为 零,只是在高转速时表面位置误差增长较快;表面位 置误差的产生使稳定切削的振动加大,铣削质量 下降。

3) 全离散法的特点是具有较高的计算效率,可 以据此很好地研究刀具磨损后铣削颤振稳定域和表 面位置误差特性;铣削稳定域的研究和表面位置误 差预报相结合可以有效优化加工工艺。

> 耂 文 献

- [1] Schmitz T, Ziegert J. Examination of surface location error due to phasing of cutter vibrations[J]. Precision Engineering, 1999, 23: 51-62.
- [2] Koshy P, Dumitresci P, Ziada Y. Novel methods for rapid assessment of tool performance in milling [J]. Institution Journal of Machine Tools and Manufacture, 2004,44(5):1599-1605.
- [3] Wang W H, Hong G S, Wang Y S. Flank wear measurement by a threshold independent method with subpixel accuracy [J]. International Journal of Machine Tools and Manufacture, 2006, 46(2):199-207.
- [4] 张辉,陈五一. 基于初期磨损统计规律的铣刀快速筛 选[J]. 机械工程学报,2011,47(11):191-198. Zhang Hui, Chen Wuyi. Milling tool rapid selection based on statistical law of initial wear [J]. Journal of Mechanical Engineering, 2011, 47 (11): 191-198. (in Chinese)
- [5] 李锡文,杜润生,杨叔子.基于后刀面磨损带面积的铣 刀磨损模型的建立[J]. 华中科技大学学报, 2001, 29 (4).53-56.

Li Xiwen, Du Runsheng, Yang Shuzi. Tool wear modeling based on the area of the major flank wear land[J]. Journal of Huazhong University of Science and Technology, 2001,29(4):53-56. (in Chinese)

[6] 张臣,周来水,安鲁陵,等. 球头铣刀刀具磨损建模 与误差补偿[J]. 机械工程学报, 2008, 44 (2): 207-212.

Zhang Chen, Zhou Laishui, An Luling, et al. Modeling and wear-induced error compensation of ball-end milling cutter wear [J]. Journal of Mechanical Engineering, 2008,44(2):207-212. (in Chinese)

[7] 康晶,冯长建,胡红英.刀具磨损监测及破损模式的识 别[J]. 振动、测试与诊断, 2009, 29(1): 5-9. Kang Jing, Feng Changjian, Hu Hongying. Tool wear monitoring and pattern recognition of tool failure[J].

Journal of Vibration, Measurement & Diagnosis, 2009,29(1):5-9. (in Chinese)

[8] 刘路,王太勇,蒋永翔,等. 基于超球面支持向量机的 刀具磨损状态识别[J]. 农业机械学报, 2011,42(1): 218-222.

Liu Lu, Wang Taiyong, Jiang Yongxiang, et al. Tool wear state recognition based on hyper-sphere support vector machin[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(1):218-222. (in Chinese)

- [9] Insperger T, Gradisek J, Kalveram M, et al. Machine tool chatter and surface location error in milling processes[J]. Journal of Manufacturing Science and Engineering, 2006,128(4):913-920.
- [10] Bachrathy D, Insperger T, Stepan G. Surface properties of the machined workpiece for helical mills[J]. Machining Science and Technology, 2009,13:227-245.
- [11] Ding Ye, Zhu Limin, Zhang Xiaojian. On a numerical method for simultaneous prediction of stability and surface location error in low radial immersion milling
 [J]. Journal of Dynamic Systems, Measurement and Control, 2011, 133(3): 5031-5038.
- [12] Ding Ye, Zhu Limin, Zhang Xiaojian, et al. A fulldiscretization method for prediction of milling stability
 [J]. International Journal of Machine Tools and Manufacture, 2010, 50(5):502-509.
- [13] Bayyoumi A E, Yucesan G, Kendall L A. An analytic mechanistic cutting force model for milling operations: a theory and methodology[J]. ASME Transactions, Journal of Engineering for Industry, 1994, 116 (8): 324-330.
- [14] Gradisek J, Kalveram M, Weinert K. Mechanistic identification of specific force coefficients for a general end mill [J]. International Journal for Numerical Methods in Engineering, 2004,44(4):401-414.

- [15] Gradisek J, Kalveram M, Insperger T, et al. On stability prediction for milling[J]. International Journal of Machine Tools and Manufacture, 2005, 45 (7/8): 769-781.
- [16] Insperger T, Stepan G. Updated semi-discretization method for periodic delay-differential equations with discrete delay [J]. International Journal of Machine Tools and Manufacture, 2004, 61(1):117-141.
- [17] 丁烨. 铣削动力学——稳定性分析方法与应用[D]. 上海:上海交通大学, 2011: 23-26.
- [18] Tan Shujun, Zhong Wanxie. Precise integration method for duhamel terms arising fromnon-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 374-381.
- [19] Zhong Wanxie, Williams F W. A precise time step integration method[J]. Proceedings of the Institution of Mechanical Engineers, Part C, Mechanical Engineering Science, 1994, 208(6): 427-430.
- [20] Mann B P, Edes B T, Easley S J, et al. Chatter vibration and surface location error prediction for helical end mills[J]. International Journal of Machine Tools and Manufacture, 2008,48(3-4): 350-361.
- [21] Insperger T, Gradisek J, Kalveram M, et al. Machine tool chatter and surface location error in milling processes[J]. Journal of Manufacturing Science and Engineering, 2006, 128(4): 913-920.

第一作者简介:吴石,男,1971 年 8 月 生,博士、教授。主要研究方向为切削加 工技术和加工过程动力学。曾发表《铣 削颤振过程中的振动非线性特征试验》 (《振动、测试与诊断》2012 年第 32 卷第 6 期)等论文。

E-mail: wushi971819@163.com