Journal of Vibration, Measurement & Diagnosis

doi:10.16450/j.cnki.issn.1004-6801.2016.06.026

卫星典型复合材料蜂窝结构板的冲击定位方法。

赵发刚¹, 周春华¹, 梁大开², 刘 曌³, 史 瑞² (1.上海卫星工程研究所空间机热技术一体化实验室 上海,200240) (2.南京航空航天大学机械结构力学及控制国家重点实验室 南京,210016) (3.上海航天控制技术研究所 上海,201109)

摘要 针对一种典型复合材料蜂窝夹芯结构,构建了光纤 Bragg 光栅传感系统,实时监测材料冲击响应信号,对信号进行了小波包分解获得其能量谱。结果表明,第16阶小波包能量对冲击敏感。利用能量幅值比进行冲击定位, 平均误差为1.87cm。该方法能够有效判定冲击位置,为卫星结构健康监测提供了一定的依据。

关键词 复合材料蜂窝板;光纤布拉格光栅;冲击定位;小波包分析 中图分类号 TH744; V414.6

引 言

复合材料蜂窝夹芯结构凭借其轻质高强等优 点,在航天领域得到越来越广泛的重视^[1],通常航天 器板结构中 80%~90%以上都采用此种结构^[2]。 但蜂窝夹层板的树脂基体和蜂窝芯子的脆性,使其 对冲击特别敏感,即使是低速冲击也会造成不可忽 视的损伤,引起结构力学性能退化。卫星在使用过 程中极易受到来自外太空碎片与卫星自身火工品的 冲击,导致结构强度、承载能力和稳定性急剧下降, 严重威胁卫星结构安全。

在典型结构板的冲击监测研究上,研究人员 建立了冲击过程中结构板的应力与应变分布数 学损伤模型,如准静力模型、Hertz模型等,得到 了典型结构板在不同冲击载荷下的损伤机 理^[3-5]。通常采用射线法、超声波及涡流等方法 监测损伤。宁志威等^[6]研究了利用声-超声技术 监测碳-碳复合材料薄板损伤,可以监测严重的冲 击脱层。周德强等^[7]提出了基于磁通密度的脉 冲涡流检测法,能够识别出 4J冲击下碳纤维复 合材料板结构表面的凹陷情况。由于复合材料 结构板本身界面分离、夹杂及树脂固化不良等因 素的影响,上述方法就会存在较大的误差,且其 无法实时在线监测冲击过程^[8]。光纤布拉格光 栅传感器(fiber Bragg grating,简称 FBG)具有体 积小、抗电磁干扰能力强、灵敏度高、耐腐蚀、波 长和时间编码复用、可实现实时和分布式测量等 特点^[9],在航天结构健康监测领域有很多的 应用。

笔者采用 FBG 构建冲击定位网络,分析冲击 响应的频域信号,采用小波包分析提取不同频段 内的信号能量特征,实现了复合材料蜂窝结构板 的冲击定位,为卫星结构健康监测找到了一条可 行的途径。

基于小波包分解和能量幅值比的冲 击定位原理

冲击定位试验中,由于复合材料蜂窝板具有各项异性的特性,导致应力波的传播模式复杂多变,所 采集到的冲击响应信号的频率组成不是单一、简单 的,十分复杂。传统的方法只能对冲击响应中的某 些频段信号进行分析,做不到全频段分析。

小波包分析比一般的方法更加精细,其自适应 性强,可以根据信号频率的高低进行分解,并能匹配 到相应的频谱信号,因此其时频分辨率也大幅增加, 信号的时频特征信息更加凸显。小波包分解方法 中,不同阶层的频段区分的计算方法为

$$(n-1)\frac{f_s}{2^{(i+1)}} \sim n \frac{f_s}{2^{(i+1)}}$$
 (1)

其中:n为分解层次;i为分解阶次;f。为采样频率。

^{*} 机械结构力学及控制国家重点实验室开放课题资助项目(MCMS-0513K02) 收稿日期:2015-03-12;修回日期:2015-11-30

利用小波包分解对信号进行 m 层分解,可以得 到第 m 层从低频到高频共 2m 个不同频段范围的特 征信号。对小波包分解特征信号系数进行重构,即 可得到每个参数的重构系数 S。利用重构系数计算 各频段信号的总能量,则构成小波能量谱

$$E_{m,i} = \int |S_{m,i}|^2 dt = \sum_{k=1}^n |x_{i,k}|^2$$
(2)

其中:*i*为分解阶次;*k*为采样点数;*x*为重构特征信号系数S散点的幅值。

根据式(1)和式(2)即可计算得到冲击响应信号 各频段的能量谱幅值分布信息^[10]。

将每一个传感器的能量幅值比 K_{ii}与其相对应 的两个光纤 FBG 传感器的坐标位置欧式距离进行 关联,即可得到一个比值点。具体关联公式为

$$\begin{cases} X_{i,j} = x_j + (x_i - x_j) K_{i,j} \\ Y_{i,j} = y_j + (y_i - y_j) K_{i,j} \end{cases}$$
(3)

其中; (x_i, y_i) , (x_j, y_j) 分别为第*i*个和第*j*个光纤 FBG 传感器的坐标; $X_{i,j}$, $Y_{i,j}$ 为关联后得到的比值 点的坐标。

经过上述步骤得到选定的比值点对应的 *x* 轴和 *y* 轴坐标,对其进行算术平均即可得到预测点坐标

$$[X,Y] = \left[\sum_{c=1}^{k} X_{i,j}/k, \sum_{c=1}^{k} Y_{i,j}/n\right]$$
(4)

其中:k为准则下选取的 x 坐标下光纤 FBG 传感器 能量幅值比的个数;n 为准则下选取的 y 坐标下光 纤 FBG 传感器能量幅值比个数。

2 试 验

2.1 对航天器蜂窝夹芯结构响应模式的分析与模拟

在有限元分析中,网格精度、结构建模、载荷工况的设置、模型的简化建模、工程参数选择及分析步骤的设置等因素都可以影响仿真分析精度。笔者所设计的蜂窝夹层板有3层结构,上下两层为复合材料面板,中间为铝制蜂窝芯子,如图1所示,各材料参数如表1所示。

表1 材料参数

Tab. 1 Material parameter

++ \v\	弹性模量		泊松	剪切模	密度/	
材科	$\overline{E_{xx}}/\text{GPa}$	E_{yy}/GPa	比	量/GPa	$(\text{kg} \cdot \text{m}^{-3})$	
铝蜂窝芯子 5A02	3.39×10^{-5}	3.39×10^{-5}	0.33	6.36×10^{-6}	25	
蒙皮 T700/AG80	135.0	11.9	0.27	4.35	1 580	

图 1 蜂窝夹芯复合材料结构仿真模型

Fig. 1 Finite element model of composite honeycomb sandwich structure

利用 MCS. Patran/Natran 软件完成建模,采用 Isomesh 进行网格划分,试件的边界条件采用四边 固支情况,分析模态振型与频率,结果如图 2 所示。 复合材料蜂窝夹芯板的振型主要集中在板中央区 域,而四边响应较小。其中 1 阶、2 阶、3 阶和 4 阶的 固有频率分别为 379.13,412.19,415.02 和 504.72Hz。参考 1 阶振型的云图,FBG 传感器采用 了圆周型布局。仿真结果为 FBG 传感器布局给出 了可行的方案。

2.2 试验系统的构建

FBG 冲击定位系统主要由传感模块/数据采集 模块和数据处理及定位模块3部分组成。传感模块 由8个 FBG 传感器构成,数据采集模块选用美国 MOI 公司的 SM130 型光纤光栅解调仪,解调频率 为2kHz,分辨率小于1pm,如图3所示。

蜂窝夹芯复合材料结构试件的几何尺寸为 525 mm×405 mm×30 mm,上、下两层为碳纤维复合 材料,中间层为铝蜂窝,四边固支,其中固支架的边框 宽度为 37 mm。在蜂窝夹芯复合材料结构试件背面 粘贴 8 个不同波长的 FBG 传感器,图 4 为试件照片。

图 3 基于 FBG 的蜂窝夹芯复合材料结构冲击监测系统 Fig. 3 Impact monitoring system of composite honeycomb sandwich structure based on FBG sensors

Fig. 4 Specimen

四边固支的蜂窝夹芯复合材料结构试件的试验 面积为 480 mm×360 mm,其划分为 11 行、15 列, 长、宽均为 30 mm 的小格,如图 5 所示,各传感器的 布局与中心波长如表 2 所示。

Tab. 2 wavelengths and locations of FBG sensors								
	传感器序列	波长/nm	位置/mm					
	FBG_1	1 529.38	(240, 300)					
	FBG_2	1 533.40	(240,60)					
	FBG_3	1 537.33	(90, 180)					
	FBG_4	1 541.03	(390, 180)					
	FBG_5	1 545.07	(120, 270)					
	FBG_6	1 549.22	(120, 90)					
	FBG_7	1 553.17	(360, 270)					
	FBG_8	1 556.82	(360, 90)					

表 2 传感器波长与位置 Fab. 2 Wavelengths and locations of FBG sensors

2.3 冲击信号的监测与分析

8支FBG传感器通过串联的方式接入光纤光

图 5 传感器排布与冲击点示意图 Fig. 5 FBG sensors configuration and impact point

栅解调仪 SM130,解调仪的采样率为2kHz,实时监测 FBG 中心波长的变化量。采用冲击锤冲击横、纵 坐标交点,冲击锤的能量设为 0.1J,利用 FBG 测量 蜂窝夹芯复合材料结构的冲击响应信号。试件在冲 击载荷作用下发生变形,FBG 传感器的中心波长会 随之发生变化,FBG 传感器的波长变化反应了试件 的受冲击情况。

选取冲击点 D(ddstartimesstartime

2.4 冲击信号的特征提取

在一定的冲击载荷作用下,结构会产生某种冲 击响应,冲击响应取决于结构的固有频率、刚度、阻 尼和激励条件。利用小波包分解对收集到的冲击响 应信号进行分解,获得全频率段的信号特征。

采用 db8 小波作为冲击载荷识别的小波函数,对 图 6 所示信号进行小波包分解,由上至下分别为 FBG₁~FBG₈ 监测的冲击响应信号的小波包能量谱。

图 6 冲击时 FBG 传感网络感知的冲击响应信号及其对应频谱 Fig. 6 Impact response signal monitored by FBG network and corresponding frequency spectrums

由图 7 可看出,各传感器信号的小波包能量谱 除第 1 阶外,第 16 阶能量最大。考虑到传感器粘贴 工艺与胶对冲击响应信号的影响,以 FBG₂ 与 FBG₄ 为例,分析冲击点变化与传感器信号之间的关系,选 择冲击响应信号小波包能量谱第 16 阶做为特征向 量。图 8、图 9 为冲击不同点,FBG₂ 与 FBG₄ 信号 E_{16} 能量云图。

由图 8、图 9 可见,冲击点距传感器 FBG₂ 和 FBG₄ 越近, E_{16} 能量值越大。随冲击点与传感器距 离的增加,能量逐渐减小,越靠近固支边框, E_{16} 衰减 越快。

由图 8 可见,纵向排布的 FBG₂ 对于传感器左 右两侧冲击敏感。由图 9 可见,横向排布的 FBG₄ 对于传感器上下两侧的冲击敏感。

采用 FBG 传感器网络监测蜂窝夹芯复合材料 结构的冲击响应信号,获得各传感器信号小波包能 量谱图。分析得到以下规律:a.小波包能量谱中第 16 阶能量对冲击敏感;b.冲击点与传感器距离越 近,*E*₁₆值越大,且随冲击点与传感器距离的增加, *E*₁₆逐渐减小;c.传感器排布方向不同,冲击敏感区 不同。

将复合材料蜂窝板划分为11行15列,排除因 冲击点较少、分布相对集中等原因导致定位结果相

图 7 冲击点 D 信号的小波包分解能量谱 Fig. 7 Wavelet packet energy spectrums at impact point D

对较小,均匀选取其中9个网格节点进行冲击加载 并对其定位预测,如图10所示。

图 10 实际冲击点和理论预测点位置分布

Fig. 10 The comparison of actual impact locations and predicted locations

表 3 为实际冲击与理论预测位置的误差统计, 结合图 10 可得,当冲击加载点处于板面中间部分区 域时,预测识别误差较小;当冲击加载点位 于板面四周边角部分时,预测识别误差较大。这是

表 3 冲击定位误差 Tab. 3 Impact location accuracy

冲击点 序号	实际冲击位置 (x/cm,y/cm)		理论预注 (x/cm,	理论预测位置 (x/cm,y/cm)	
1	(21.00,	15.00)	(22.45,	13.92)	1.81
2	(24.00,	18.00)	(24.32,	17.55)	0.55
3	(18.00,	18.00)	(16.82,	19.23)	1.70
4	(27.00,	24.00)	(28.34,	24.12)	1.35
5	(30.00,	9.00)	(31.25,	10.50)	1.95
6	(36.00,	21.00)	(34.56,	20.53)	1.51
7	(15.00,	30.00)	(16.92,	28.82)	2.25
8	(6.00,	12.00)	(4.25,	9.67)	2.91
9	(45.00,	6.00)	(47.12,	7.86)	2.82

由于固支边致使冲击应力波衰减所造成。由表 3 可 知,冲击定位系统对均匀选取的 9 个冲击点都做出 了准确的定位,且所选择的冲击点包括了所有行列 的关键点,兼顾了中间和四周区域,因此定位的结果 具有参考性。其中 8 号冲击点预测识别误差最大, 为 2.91 cm; 2 号冲击点预测识别误差最小,为 0.55 cm;平均预测误差为 1.87 cm。

3 结束语

笔者采用 FBG 传感器构建蜂窝夹层结构板冲 击定位网络,通过小波包分析方法对传感器采集的 冲击响应信号进行特征提取,分析各频率段信号的 能量与冲击位置之间的关系,实现了蜂窝夹层结构 板的冲击定位。通过试验证明,该方法能够有效判 定冲击位置,测试平均误差为1.87cm,可基本满足 工程需求。

参考文献

- [1] Tsuda H, Lee J R. Strain and damage monitoring of CFRP in impact loading using a fiber Bragg grating sensor system[J]. Composites Science and Technology, 2007, 67: 1352-1353.
- [2] 陈烈民. 航天器结构与机构[M]. 北京:中国科学技术 出版社, 2005: 216-217.
- [3] Laursen T A, Simo J C. A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems
 [J]. International Journal for Numerical Methods in Engineering, 1993, 36(20): 3451-3485.

- 【4】林智育,许希武.复合材料层板低速冲击后剩余压缩强度[J].复合材料学报,2008,25(1):140-146.
 Lin Zhiyu, Xu Xiwu. Residual compressive strength of composite laminates after low-velocity impact[J]. Acta Material Compositae Sinica, 2008, 25 (1): 140-146. (in Chinese)
- [5] 段世慧,叶天麟.一种通用的冲击分析模型及冲击响应 计算[J]. 航空学报, 2002, 23(2): 158-161.
 Duan Shihui, Ye Tianlin. General impact analysis and low-velocity impact response algorithm[J]. Acta Aeronautica Et Astrinautica Sinica, 2002, 23 (2): 158-161. (in Chinese)
- [6] 宁志威,孙良新.声-超声技术在碳-碳复合材料薄板损 伤检测中的应用[J].振动、测试与诊断,2001,21(1): 15-21.

Ning Zhiwei, Sun Liangxin. Application of acousto-ultrasonic technique to damage detection of carbon-carbon composite thin plate [J]. Journal of Vibration, Measurement & Diagnosis, 2001, 21 (1): 15-21. (in Chinese)

[7] 周德强,吴佳龙,王俊,等.碳纤维增强复合材料冲击缺陷脉冲涡流无损检测仿真与试验研究[J].传感技术学报,2015,28(5):671-677.

Zhou Deqiang, Wu Jialong, Wang Jun, et al. Simulation and experiment of impact damages in carbon fiber reinforced plastic using pulsed eddy current testing [J]. Chinese Journal of Sensors and Actuators , 2015, 28(5):671-677. (in Chinese)

- [8] Paolo B, Erika G. Developmentand experimental validation of a numerical toolfor structural health and usage monitoring systems based on chirped grating Sensors[J]. Sensors, 15(4):1321-1341.
- [9] 陈先有,曹金华,黄俊波.航空用复合材料结构件无损 检测技术分析[J].国防技术基础,2007,7(8):11-14. Chen Xianyou, Cao Jinhua, Huang Junbo. Nondestructive testing technology analysis of aeronautical composite structures [J]. Technology Foundation of National Defence, 2007,7 (8): 11-14. (in Chinese)
- [10] 王彦,梁大开,周兵.光纤光栅型智能结构损伤识别的 小波包分析[J].光学精密工程,2007,15(11):1731.
 Wang Yan, Liang Dakai, Zhou Bing. Damage diagnosis for optical fiber grating smart structure Based on wavelet packet Analysis [J]. Optics and Precision Engineering, 2007, 15 (11): 1731-1737.

第一作者简介:赵发刚,男,1981 年 8 月 生,高级工程师。主要研究方向为卫星 结构设计与振动测试。曾发表《匹配追 踪在齿轮故障诊断中的应用》(《上海交 通大学学报》2009 年第 43 卷第 6 期)等 论文。

E-mail:fagang0820@126.com

本刊入选 2016 年度中国高校百佳科技期刊

由中国高校科技期刊研究会组织评选的 2016 年度中国高校杰出·百佳·优秀科技期刊活动,共选出中 国高校杰出科技期刊 20 种、中国高校百佳科技期刊 104 种、中国高校优秀科技期刊 254 种、中国高校编辑出 版质量优秀科技期刊 69 种,并于 11 月在北京召开了隆重的表彰大会。《振动、测试与诊断》入选 2016 年度 中国高校百佳科技期刊。