Journal of Vibration, Measurement & Diagnosis

doi:10.16450/j.cnki.issn.1004-6801.2018.06.019

钢-BFRP 复合筋混凝土柱试验与骨架曲线模型研究

肖同亮1,2, 邱洪兴3

(1.南京工程学院建筑工程学院 南京,211167) (2.南京工程学院结构工程研究所 南京,211167)(3.东南大学土木工程学院 南京,210096)

摘要 为了研究钢-玄武岩纤维(basalt fiber reinforced polymer,简称 BFRP)复合筋混凝土柱的抗震性能,以复合筋的纤维含量(等效配筋率)为主要参数,开展了4个钢筋与复合筋混凝土柱的抗震性能试验。试验结果表明,随着复合筋二次刚度比的提高,构件承载力也有明显提高,构件具有较为显著的屈服后刚度。在试验基础上提出了钢-BFRP复合筋混凝土柱骨架曲线理论模型,建立了骨架曲线特征点参数与结构特性之间的解析关系,该表达式能够综合考虑矩形构件截面尺寸、轴压比和复合筋本构关系及配筋情况等参数影响。该模型与试验结果吻合较好,对普通钢筋混凝土柱也具有较好的预测性,说明该理论模型具有一定的实用性和精确性,可实现利用杆系模型开展结构层次的建模,供混凝土框架结构非线性分析参考。

关键词 钢-玄武岩纤维复合筋;混凝土柱;骨架曲线模型;抗震性能 中图分类号 TU375.3; TU377.9; TH113.2

1 问题的引出

传统钢筋混凝土结构在恶劣环境(强酸碱、海洋 或撒盐等)条件下钢筋锈蚀严重,结构一般在 10~ 15 年会出现钢筋腐蚀造成的顺筋裂纹,如不采取措 施结构将很快达到破坏极限。纤维塑料(fiber reinforced polymer,简称 FRP)筋与普通钢筋相比具有 抗腐蚀性能好、抗拉强度高等特点^[1],因此欧美等国 最先探讨在结构中应用 FRP 复合材料,目前已由结 构加固逐渐延伸到新建结构^[2-3]。在 FRP 配筋或纤 维混杂配筋构件性能方面,国内外已有大量研 究^[4-5],欧美等国也已颁布了关于 FRP 增强新型结 构的设计和指南^[6]。

结合普通钢筋弹性模量高、延性好和 FRP 耐腐 蚀性能强、极限强度高的优点,Wu 等^[7]探索出连续 纤维与钢筋复合的关键工艺,在单调拉伸和往复拉 伸试验的基础上,依据复合法则给出了钢-纤维复合 筋在往复荷载下的应力应变关系。在复合筋材的探 索与尝试中,玄武岩纤维由于延伸率较高,被认为是 替代碳纤维的较好材料^[8]。

钢-玄武岩纤维复合筋是以钢筋为内芯,外包纵 向玄武岩纤维并一体化拉挤成型的新型复合筋材, 具有高强度、高韧性、耐腐蚀及低成本等优点,其力 学性能复合关系见图 1。目前,在复合筋的材料本 构、与混凝土黏结滑移性能以及构件层次已开展了 部分基础性研究^[9]。

恢复力模型反映了结构在地震作用下强度衰减 及刚度退化的力学特征,是进行结构地震弹塑性反 应分析的基础。骨架曲线是恢复力模型研究的基 础,普通钢筋混凝土构件由于钢筋屈服后很难有稳 定的屈服后刚度,其恢复力模型刚度和强度退化较 为严重^[10];而复合筋混凝土柱的骨架曲线模型与钢 筋混凝土柱差异较大。

笔者开展了钢-BFRP复合筋混凝土柱的抗震性能试验,并从构件层次对其骨架曲线模型展开研究,提出骨架曲线特征点的理论表达式,从而为复合

^{*} 国家自然科学基金资助项目(51708107);江苏省高校自然科学基金资助项目(17KJB560005);南京工程学院创新基金 重大资助项目(CKJA201806) 收稿日期:2018-03-16;修回日期:2018-06-03

筋混凝土框架结构非线性分析提供参考[11]。

2 试验概况

2.1 试件设计

试验设计了 $Z_1 \sim Z_4$ 共4个试件。其中试件 Z_1 为钢筋混凝土对比柱,其余柱纵筋为钢筋与玄武岩 纤维组成的复合筋材,筋材变化参数主要为复合筋 中纤维含量。该复合筋采用 HRB400 直径为 12 mm 螺纹钢筋作为内芯,外包覆层采用 CBF13-2400tex(tex 表示单束每千米长度的质量) 玄武岩纤维。外包玄武岩纤维束数分别为 24 束、 43 束和 140 束,试验中使用到的钢筋和玄武岩纤维 复合筋实测力学性能见表 1。

表 1 钢-玄武岩复合筋实测力学性能 Tab. 1 Properties of longitudinal reinforcements

筋材 型号	直径/ mm	$f_y/$ MPa	$\frac{\epsilon_y}{10^{-3}}$	$f_u/$ MPa	$\frac{\epsilon_u}{10^{-3}}$	强屈比
S12	12.00	440.00		580.00		1.318
S14	14.00	430.00		550.00		1.279
S12B24	15.44	290.10	2.245	380.94	20.492	1.330
S12B43	16.49	258.46	2.350	513.12	24.178	1.985
S12B140	21.06	228.66	2.619	773.83	18.069	3.384

S12 表示直径为 12 mm 的 HRB400 钢筋; B24 表示纤维 束数为 24

构件截面皆采用对称配筋,每侧配3根受力主筋,试件Z₁尺寸、配筋和测点布置见图2,图中 HRB400为钢筋的牌号和强度级别,@为箍筋间距。

Z₂~Z₄ 纵筋配置根数、位置及应变片监测位置 与 Z₁ 相同。试件型号和箍筋配置见表 2,试验名义 轴压比为 0.3,采用水平低周反复荷载加载方式。 试验使用的混凝土为商品混凝土,设计强度等级为 C30,立方体试块平均抗压强度为 31.6 MPa。

表 2 试件参数 Tab. 2 Details of test specimen

编号	筋材型号	试件高度/mm	截面纵筋	箍筋
Z_1	⊈ 14	1 200	3 ⊈ 14	∯ 8@100
Z_2	S12B24	1 200	3S12B24	∯ 8@100
Z_3	S12B43	1 200	3S12B43	∯ 10@100
Z_4	S12B140	1 200	3S12B140	∯ 12@80

2.2 加载装置及加载制度

试验在东南大学结构试验室 50 t 试验机上进

Fig. 2 Cross section and reinforcement details of specimen Z₁ (unit:mm)

行。构件上端设一油压千斤顶提供轴力,在整个试验中对试件顶部施加竖向轴压力,通过控制油泵读数维持竖向荷载的稳定。水平加载按屈服前荷载控制,屈服后位移控制加载制度对试件施加水平荷载,每个位移幅值处进行3次反复循环,直至试件承载力下降到峰值承载力的85%以下或试件变形太大不适于继续加载为止。加载实物如图3所示。

图 3 试验加载示意图 Fig. 3 Test setup

3 试验现象与构件骨架曲线

3.1 试件破坏形态

水平加载初期(40~60 kN)时各构件混凝土先后 出现开裂。构件屈服后随着位移加载不断增大,裂缝 逐步开展,水平裂缝发展转变为斜裂缝,纤维含量高 的复合筋构件荷载增加较为显著。以Z。柱为例,当 荷载达到最大荷载时,各构件脚部混凝土压碎并能陆 续听到"咔咔"纤维断裂声音,受压区混凝土起皮掉 削,如图4所示。当构件达极限荷载破坏时,试件根 部混凝土酥裂甚至大块脱落,箍筋严重屈服,纵筋屈 曲外露,试件破坏明显,如图 5 所示。构件 Z₄ 正向加载最后尚未达到峰值荷载,但由于侧移过大而终止。

(a) 峰值荷载时(a) At peak load

(b) 极限荷载时 (b) At ultimate load

图 4 Z₃ 试件裂缝分布图 Fig. 4 Crack pattern of specimen Z₃

图 5 Z₃ 柱脚局部破坏形态 Fig. 5 Failure mode at column base of Z₃

3.2 柱骨架曲线

在构件开裂前荷载位移曲线基本相同,开裂后 构件刚度有所折减。纵筋屈服后,各构件的骨架曲 线与钢筋混凝土柱有所不同。按筋材等强度原则配 置的 Z₁ 和 Z₂ 构件骨架曲线近乎重合,承载力也基 本相同;按筋材等刚度原则配置的 Z₁ 和 Z₄ 构件在 屈服前二者骨架曲线基本重合,屈服后 Z₄ 的承载力 较 Z₁ 有较大提升,说明纤维在纵筋屈服后发挥作用 明显。柱的骨架曲线对比如图 6 所示。

随着纤维含量的增加,各构件最大荷载和极限 荷载都有所提高,相对应的位移值也有所增大,即构 件承载力有所增加,但延性并未发生明显降低。

4 复合筋混凝土柱骨架曲线模型

影响框架柱刚度和变形的因素很多,如轴压比、 剪跨比、截面形状尺寸、纵筋配筋率和强度、混凝土 强度及配箍情况等。笔者主要讨论以弯曲破坏为主 的矩形截面柱,配箍情况间接地反映在柱根部塑性 铰长度。

图 6 柱试验骨架曲线对比 Fig. 6 Comparison of skeleton curve in column tests

由于复合筋的力学特点不同于普通钢筋,复合筋柱与普通钢筋混凝土混凝土柱的骨架曲线在屈服 前较为相似,但峰值点与屈服点的荷载比值随着纤 维含量的增加有所增大,且具有可设计性。考虑复 合筋中纤维增强部分主要在纵筋屈服后才能更加明 显地得到体现,因此对该恢复力模型的开裂点与极 限点的定义方法可参考钢筋混凝土柱^[12],但屈服点 和峰值点需考虑复合筋的力学性能和配筋参数。综 上所述,结合复合筋混凝土构件受力特点,笔者提出 考虑开裂点和刚度退化的四线型恢复力骨架曲线模 型,如图 7 所示。

该模型包含 8 个参数,即 4 个内力参数:开裂弯 矩 M_{σ} 、屈服弯矩 M_{y} 、峰值弯矩 M_{ρ} 和极限弯矩 M_{u} ; 4 个位移参数:开裂转角 θ_{σ} (或开裂位移 Δ_{σ})、屈服 转角 θ_{y} (或屈服位移 Δ_{y})、峰值弯矩对应转角 θ_{ρ} (或 峰值位移 Δ_{ρ})和极限转角 θ_{u} (或极限位移 Δ_{u})。

4.1 开裂弯矩与位移

混凝土构件的开裂弯矩可用式(1)估算

$$M_{\sigma} = \frac{\gamma f_{t} I_{0}}{y} + \frac{N I_{0}}{A_{0} y} \tag{1}$$

其中: *f*_i 为混凝土的抗拉强度; *A*₀和 *I*₀分别为换算 截面的面积和惯性矩; *y* 为换算截面形心至受拉边 缘的距离; γ 为截面受拉区弹塑性系数, 对于矩形截 面可近似取为 1.75。

开裂点位移可通过开裂曲率对杆长积分得到

$$\Delta_{\sigma} = \phi_{\sigma} \frac{L^2}{3} = \frac{M_{\sigma}}{B_0} \frac{L^2}{3}$$
(2)

其中:B。为截面开裂前刚度;L 为构件长度。

4.2 屈服弯矩与位移

构件的屈服定义为构件根部钢筋应变达到屈服 应变所对应的位移和荷载。屈服弯矩根据平截面假 定,由截面的力矩平衡条件计算

$$M_{y} = A_{sf} f_{sfy} (h_{0} - a'_{s}) + nbh_{0} f_{c} \left(\frac{h}{2} - a'_{s}\right) - 0.5\xi bh_{0} f'_{c} \left(\frac{1}{3}\xi h_{0} - a'_{s}\right)$$
(3)

其中: M_y 为屈服弯矩; f_y 为钢筋的屈服强度; f_e 为 混凝土轴心抗压强度;n为轴压比; h_o 为截面的有效 高度;b,h为截面的宽度和高度; A_s 为受拉钢筋截 面面积; a_s 为钢筋中心线到截面边缘的距离; f'_e 为 截面屈服时混凝土的最大压应力。

按式(4)求得

 $\xi =$

$$f'_{c} = \frac{\xi}{1 - \xi} \frac{f_{y}}{\alpha_{E}} \tag{4}$$

其中:ξ为受压区高度系数。

根据平截面假定及水平力的平衡条件,有

$$\sqrt{\left(\rho_{sf}+\rho_{s}'+\xi\frac{f_{c}}{f_{y}}\right)^{2}+\alpha_{E}^{2}+2\left(\rho_{sf}+\rho_{s}'a_{s}'/h_{0}+\xi\frac{f_{c}}{f_{y}}\right)\alpha_{E}}-\left(\rho_{sf}+\rho_{s}'+\xi\frac{f_{c}}{f_{y}}\right)\alpha_{E}}$$
(5)

其中: $a_E = E_{sf} / E_c$, E_{sf} 和 E_c 分别为复合筋和混凝土的弹性模量: ρ_{sf} , ρ'_s 分别为受拉复合筋和受压内芯钢筋配筋率。

屈服点位移为

$$\Delta_y = \phi_y L^2 / 3 \tag{6}$$

4.3 峰值荷载与位移

将混凝土受压区达极限压应变为破坏标志,柱 峰值点弯矩为

$$M_{p} = \alpha_{1} f_{sfu} A_{sf} (h_{0} - a'_{s}) + \beta N \left(\frac{h}{2} - a'_{s}\right)$$
(7)

其中:为峰值弯矩; α_1 为柱荷载计算系数,受拉侧配 筋率小于等于 0.8%时取 1.2,大于等于 1.0%时取 0.8,中间按线性插值计算; β 为轴力调整系数,当轴 压比小于等于 0.3 时取 1.3,大于等于 0.5 时取 1.4,中间按线性插值计算;N为柱轴力。

$$\Delta_{p} = \Delta_{y} + \Delta_{pl} = \frac{\phi_{y}L^{2}}{3} + (\phi_{u} - \phi_{y}) l_{p} (L - 0.5 l_{p})$$
(8)

其中: Δ_{p} 为峰值弯矩对应的位移: Δ_{y} , Δ_{μ} 分别为组成 峰值位移中的弹性和塑性位移部分: $l_{p} = 0.05L + 0.1 f_{sy} d_{b} / \sqrt{f_{c}}$,为塑性铰长度: $\sqrt{f_{c}}$ 为混凝土的圆柱 体抗压强度: f_{sy} 为复合筋的屈服强度: d_{b} 为纵筋直径。

4.4 极限荷载与位移

柱极限荷载为

$$P_u = 0.85 P_p \tag{9}$$

柱极限位移为

$$\Delta_{u} = (1.5\mu_{cu}' - 0.5\mu_{u}) \Delta_{y} = \left(\frac{1.5\sqrt{1+30a_{w}\lambda_{w}}}{0.045+1.5n} - \frac{0.5\sqrt{1+6a_{w}\lambda_{w}}}{0.045+1.5n}\right)\Delta_{y}$$
(10)

5 骨架曲线模型与试验结果比较

为了检验所提出的骨架曲线模型的可靠性,将 复合筋力学性能实测值代入本研究的计算公式,得 到各构件理论值与试验骨架曲线的对比。各试件理 论与试验骨架曲线特征点的荷载、位移值对比见 表 3,表中荷载或位移下标带 *t* 的为试验结果,带 *c* 的为按笔者建议方法的计算结果。

图 8 为采用笔者提出的复合筋混凝土柱骨架曲 线模型的理论值与柱试验骨架曲线比较图。

表 3 柱骨架曲线特征点试验结果与计算结果比较 Tab. 3 Comparison of feature points of the column skeleton curve between simulation and experimental result

		-			-								-			
开裂点		屈服点			峰值荷载点			极限荷载点								
性细与	$V_{cr,t}$	$\Delta_{cr,t}$	$V_{\rm cr,c}$	$\Delta_{cr,c}$	$V_{y,t}$	$\Delta_{y,t}$	$V_{y,c}$	$\Delta_{y,c}$	$V_{p,t}$	$\Delta_{p,t}$	${V}_{p,c}$	$\Delta_{p,c}$	$V_{u,t}$	$\Delta_{u,t}$	$V_{u,c}$	$\Delta_{u,c}$
Z_1	40.12	2.43	41.06	1.43	93.67	14.10	88.82	5.83	123.91	27.92	133.25	27.16	97.08	55.86	113.27	54.81
Z_2	40.38	2.55	34.82	1.06	70.28	8.15	74.84	6.32	117.55	32.28	112.23	31.41	91.99	48.07	95.40	50.89
Z_3	60.30	4.91	34.42	1.06	100.54	16.36	75.71	6.62	145.30	45.32	139.09	38.71	122.99	60.41	179.52	64.37
Z_4	60.23	5.82	33.76	1.06	108.48	16.25	83.82	7.84	170.56	56.34	179.52	64.37		—	161.121	102.34
V_{α} , V_{ν}	,V,和 V	7. 分别	为开裂	荷载、	屈服荷素	え峰値	荷载和	极限着	ī载:∆"	Δ_{x}, Δ_{h}	和乙,	分别为	相应位利	多;位彩	8单位为	mm;

 V_{σ} , V_{y} , V_{ρ} 和 V_{u} 分别为开裂荷载、屈服荷载、峰值荷载和极限荷载; Δ_{σ} , Δ_{y} , Δ_{ρ} 和 Δ_{u} 分别为相应位移;位移单位为 mm 荷载单位为 kN

由图 8 不难看出,笔者所提出的恢复力骨架曲 线特征点理论模型与试验值吻合较好,表明该理论 模型简洁可靠,可应用于复合筋混凝土框架结构的 抗震性能分析。

为了进一步验证该模型的有效性,笔者选取文献[13]中的普通钢筋混凝土柱在高轴压比下构件试验参数代入模型,该批构件截面尺寸为 350 mm× 350 mm,混凝土强度等级为 C30,试验编号和配筋参数等如表 4 所示。

计算了笔者提出的弯矩-转角骨架曲线理论模

型,试验与理论模型计算结果对比见图 9。

表 4 钢筋混凝土柱试验基本参数 Tab. 4 Basic parameters of RC column tests

编号	试件高度/mm	轴压比	受拉纵筋	箍筋
C-1-1	1 600	0.7	3 ∯ 22	⊈ 10@100
C-3-2	1 600	0.7	3 ∯16	∯ 10@100
C-6-1	1 600	0.8	3 ∯ 22	∯ 10@100
C-8-3	1 600	0.9	3 ∯16	∯ 7.75@100
C-10-3	1 600	0.9	3 ∯ 22	∯ 7.75@100

由比较结果可以看出,即使对于高轴压比的钢筋 混凝土柱,该模型仍然有较好的精确性,说明本模型不 仅可以应用于复合筋混凝土柱,还可用于普通钢筋混 凝土柱的骨架曲线计算,具有较好的推广应用价值。

6 结 论

1) 钢-玄武岩纤维复合筋混凝土柱在屈服前骨架曲线与 RC 柱较为相似,随着纤维含量的增加,各构件最大荷载和极限荷载都有所提高,相对应的位移值也有所增大,即构件的承载力有明显提高,但延性并未有明显降低。

2)针对钢-BFRP复合筋的力学性能和受力特点,提出了包括开裂点、屈服点、峰值点和破坏下降段在内的四折线荷载-位移骨架曲线理论模型,并给出了特征点的荷载及位移计算公式,该公式具有实用性与准确性。

3)所提出的钢-BFRP复合筋混凝土柱骨架曲 线模型建立了构件整体力学性能与截面形状尺寸、 轴压比、配筋情况等各参数之间的内在关系,可以预 测以弯曲破坏为主的复合筋混凝土构件的抗震性 能,对普通混凝土柱也有较好的预测能力。

4)本理论模型可实现利用简化杆系模型模拟 结构层次的复杂非线性行为,为复合筋混凝土框架 结构的非线性分析提供预测和参考。

参考文献

- Shi Yilei, Zohrevand P, Mirmiran A. Assessment of cyclic behavior of hybrid FRP concrete columns [J]. Journal of Bridge Engineering, 2013,18(6):553-563.
- [2] Zadeh H, Nanni A. Design of RC columns using glass FRP reinforcement [J]. Journal of Composites for Construction, 2013,17(3):294-304.
- [3] Mousa S, Mohamed H, Benmokrane B, et al. Flexural behavior of full-scale circular concrete members reinforced with basalt FRP bars and spirals: tests and theoretical studies[J]. Composite Structures, 2018, 203:217-232.
- [4] Zhu Haitang, Cheng Shengzhao, Gao Danying, et al.

Flexural behavior of partially fiber-reinforced highstrength concrete beams reinforced with FRP bars[J]. Construction and Building Materials, 2018,161,587-597.

- [5] Sun Zeyang, Wu Gang, Zhang Jian, et al. Experimental study on concrete columns reinforced by hybrid steel-fiber reinforced polymer (FRP) bars under horizontal cyclic loading [J]. Construction and Building Materials, 2016,130;202-211.
- [6] American Concrete Institute (ACI). ACI 440. 1R-15, guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer bars [R]. Farmington Hills, MI, USA; ACI, 2015.
- [7] Wu Gang, Wu Zhishen, Luo Yunbiao, et al. Mechanical properties of steel-FRP composite bar under uniaxial and cyclic tensile loads[J]. Journal of Materials in Civil Engineering, 2010,22(10):1056-1066.
- [8] Ibrahim A, Wu Zhishen, Fahmy M, et al. Experimental study on cyclic response of concrete bridge columns reinforced by steel and basalt FRP reinforcements[J]. Journal of Composites for Construction, 2016,20(3):04015062.
- [9] Wu Gang, Sun Zeyang, Wu Zhishen, et al. Mechanical properties of steel-frp composite bars (SFCBs) and performance of SFCB reinforced concrete structures[J]. Advances in Structural Engineering, 2012,15(4):669-679.
- [10] Ibarra L, Medina R, Krawinkler H. Hysteretic models that incorporate strength and stiffness deterioration
 [J]. Earthquake Engineering and Structural Dynamics, 2005,34(12):1489-1511.
- [11] 肖同亮,邱洪兴,陶欣,等. 钢-玄武岩纤维复合筋混凝 土框架结构非线性地震反应分析[J]. 振动与冲击, 2014,33(23):173-178,189.
 Xiao Tongliang, Qiu Hongxing, Tao Xin, et al. Nonlinear seismic response analysis of a concrete frame structure reinforced with steel-basalt fiber composite bars[J]. Journal of Vibration and Shock, 2014, 33 (23):173-178,189. (in Chinese)
- [12] 欧进萍,何政,吴斌,等. 钢筋混凝土结构基于地震损伤 性能的设计[J]. 地震工程与工程振动,1999(1):21-30.
 Ou Jinping, He Zheng, Wu Bin, et al. Seismic damage performance-based design of RC structures[J].
 Earthquake Engineering and Engineering Vibration, 1999(1):21-30. (in Chinese))
- [13] 万海涛.钢筋混凝土梁、柱构件抗震性能试验及其基于 变形性能的参数研究[D].广州:华南理工大学,2010.

第一作者简介:肖同亮,男,1982 年 1 月 生,博士、讲师。主要研究方向为混凝土 结构抗震性能和新型纤维复合材料。曾 发表《钢-玄武岩纤维复合筋混凝土框架 结构非线性地震反应分析》(《振动与冲 击》2014 年第 33 卷第 23 期)等论文。 E-mail: xtl@njit. edu. cn