Vol. 39 No. 2 Apr. 2019

doi: 10. 16450/j. cnki. issn. 1004-6801. 2019. 02. 008

基于模型的螺栓松动状态监测方法

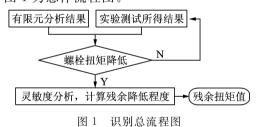
王子斌, 郭勤涛, 铭

(南京航空航天大学直升机传动技术重点实验室 南京,210016)

摘要 基于现有的模型损伤识别技术,提出了一种两阶段的螺栓状态长期在线识别方法:第1阶段识别螺栓连接 中是否存在扭矩降低,设定了基于模态应变能的新损伤指标,并讨论了螺栓松动中非线性的表现;第2阶段识别松 动螺栓的残余扭矩,以试验测得的前 3 阶局部振型,通过灵敏度修正识别螺栓连接中 BEAM 单元的弹性模量,建立 了螺栓残余扭矩与 BEAM 单元弹性模量之间的对应关系:最后,使用两块通过螺栓连接的矩形钢板验证了该方法 的有效性。试验结果表明,该方法能够快速识别出扭矩的降低,并识别其残余扭矩值是否已低于安全范围。

关键词 螺栓连接:状态识别:灵敏度修正:模态应变能 中图分类号 TH113: O327

引 言


针对螺栓松动诊断的问题,国内外相关人员已 经做了大量研究。王涛等[1-2]采用了压电传感器对 螺栓的松紧程度进行识别。Huda 等[3]利用螺栓联 接中的冲击响应进行识别。He 等[4] 通过观测结构 固有频率的变化对其中的螺栓松动进行识别。综上 最受关注的问题主要有: a. 建立合适的动力指 纹[5-6];b. 螺栓松动的产生机理[7];c. 螺栓连接中的 非线性动力学问题[6]。

研究表明,在螺栓连接中,预紧力的突然降低是 早于螺纹面间的相对滑移的,而后者的损害远大于 前者[4];因此对于残余扭矩的识别,是螺栓状态识别 的一种可行方法。目前对于残余扭矩的识别,主要 依靠人工周期性的测量,该方法不能及时发现扭矩 降低的发生。笔者提出了一种基于模型的螺栓状态 长期在线识别方法,以测得的低阶模态振型,用灵敏 度修正的方法识别其残余扭矩值。同时为了降低计 算成本,在进行灵敏度修正前,判定扭矩有无降低: 若无,系统将不进行修正;反之则进行修正识别。

螺栓松动识别的两个阶段

笔者所提基于模型的螺栓松动长期在线识别方 法,其过程分为以下两阶段:a. 第1阶段中建立了新 的损伤指标,旨在识别螺栓扭矩是否降低,此阶段特 点为计算快速,作为触发阶段。若识别结果为扭矩已 降低,则进入第2阶段。b. 第2阶段中使用灵敏度修 正识别残余扭矩值,并对第1阶段的识别结果进行检 验,此阶段结果精确,但成本较大,作为检验阶段。

图 1 为总体流程图。

Fig. 1 Flow chart of the CAE model updating

1.1 扭矩是否降低的识别

1.1.1 基于 RBE2 的螺栓连接建模

在进行螺栓结构的有限元分析时,通常将螺栓 结构简化成 BEAM 单元,采用多点约束将梁单元与 被连接件连接在一起的建模方式。将螺栓简化成圆 柱形梁单元用刚性连接 RBE2,模拟螺栓与被连接 件之间的相对位置关系[8],其连接模型如图 2 所示。 1.1.2 针对局部损伤的动力指纹

在识别前需首先建立发生松动的扭矩值 T.,即 一旦螺栓连接中残余扭矩低于 T。值即判定为发生 松动,该值针对不同工况功能的螺栓需单独建立。

单个螺栓连接的松动是一种典型的局部损伤, 具有局部损伤的普遍特性,低阶固有频率、振型等经 典动力指纹对其不够敏感。不同于上述动力指纹,

^{*} 国家自然科学基金资助项目(51505398) 收稿日期:2018-01-19;修回日期:2018-11-14

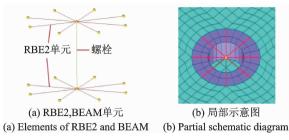


图 2 螺栓连接建模示意

Fig. 2 Schematic of simplified modeling of bolted

模态应变能(modal strain energy,简称 MSE)被证明对局部损伤相当敏感,抗噪能力也更强^[9]。因此,笔者建立一种针对局部损伤的动力指纹。

传统的模态应变能计算公式如下

$$MSE_r = \{\boldsymbol{\Phi}_r\}^{\mathrm{T}} \boldsymbol{K} \{\boldsymbol{\Phi}_r\} / 2 \tag{1}$$

其中: $\{\Phi_r\}$ 为第r阶的模态振型;K为单元的刚度贡献值矩阵; MSE_r 为该单元的第r阶模态应变能值。

在试验中所获得模态应变能值是一个矩阵,现有的数据处理方式为建立各单元的 MSE 变化率[9-10],文中建立如下损伤指标

 $MV_j^n = \{ MSE_{j1}^n, MSE_{j2}^n, \cdots, MSE_{jr}^n \}$ (2) 其中: MSE_{jr}^n 为第 n 次测量中,第 j 个单元的第 r 阶模态应变能值。

定义 MV" 为该螺栓所在单元的模态应变能向量,进一步定义

$$MSEVS_{j}^{n} = \frac{\left| (\boldsymbol{M}\boldsymbol{V}_{j}^{n})^{T}MV_{j}^{p} \right|}{\sqrt{(\boldsymbol{M}\boldsymbol{V}_{j}^{n})^{T}MV_{j}^{n}(\boldsymbol{M}\boldsymbol{V}_{j}^{p})^{T}MV_{j}^{p}}} \quad (3)$$

其中: MV_i^c 为螺栓处于理想紧固工况时,第j个单元的模态应变能向量,则 MSEVS $_i^c$ 即为建立的新损伤指标,称为模态应变能相关度。

由式(3)可知,MSEVS $_i$ "的范围为 0~1,其意义为 MV_i "与 MV_i "两向量间的相关度;该值越大,即第 n 次测量时第 i 个单元发生损伤的可靠度越小。新的损伤指标有如下优点: a. 以模态应变能为基础,因此其对于螺栓松动具有较高的灵敏度; b. 每次测量所得的结果仅为一个数值,便于观测有无螺栓扭矩降低的发生。

1.2 残余扭矩值的识别

上述动力指纹的识别结果有一定误差,且不能准确识别扭矩降低的程度,这不利于机构整体状态评估与预测。因此提出一种基于灵敏度修正的识别方法,以测得的单元前3阶振型为基础,对目标单元的弹性模量进行修正,达到识别残余扭矩值的目的。

此处建立另一个残余扭矩的下限值 T_{\min} ,即该螺栓连接仍可正常工作,无需对其作出处理的最低值,若残余扭矩值低于 T_{\min} ,则需对该螺栓进行检修、替换。与 T_s 类似, T_{\min} 值也需要具体针对不同

工况功能的螺栓建立。

1.2.1 振型的 Neumann 级数扩充

在实际测量中,所测自由度远小于有限元模型总自由度,为了尽可能得到更多的模型信息,采用一种基于 Neumann 级数的方法对所采集的振型进行扩充。Neumann 级数法是在 Guyan 缩聚法基础上改良而成的,相比后者,Neumann 级数法的精度更高[11]。Neumann 级数模态扩充的公式如下

$$A_1 = \mathbf{K}_{ss}^{-1} \mathbf{M}_{ss} \mathbf{K}_{ss}^{-1} \mathbf{K}_{sm} M_{mm}^{-1}$$
 (4)

$$B_1 = 1 + A_1 \mathbf{K}_{\text{ms}} \tag{5}$$

$$B_2 = \mathbf{K}_{ss}^{-1} \mathbf{K}_{sm} + A_1 \mathbf{K}_{mm} \tag{6}$$

$$\{\boldsymbol{\Phi}_{j}^{s}\} = \begin{bmatrix} \boldsymbol{I}_{mm} \\ -B_{1}^{-1}B_{2} \end{bmatrix} \{\boldsymbol{\Phi}_{j}^{m}\} \tag{7}$$

其中:K,M分别为结构的刚度矩阵与质量矩阵,下标 m 和 s 代表主自由度(即试验所测量的自由度)和副自由度(即试验中未测量的自由度); $\{\Phi_j^m\}$ 为试验所得第j阶振型; $\{\Phi_j^n\}$ 为扩充后的第j阶振型。

1.2.2 基于模态应变能的灵敏度修正

文中使用螺栓连接中 BUSH 单元的弹性模量 表征残余扭矩值。此处选择一种基于模态应变能灵敏度的修正方法,对 BUSH 单元的弹性模量进行识别。定义试验模态应变能 MSE_{rr}^{s} 与计算模态应变能 MSE_{rr}^{s} 之间的残差为 R,此时可将基于模态应变能的模型修正看作一个优化问题[12]

$$\min |R(E)|^{2}, R(E) = MSE_{jr}^{e} - MSE_{jr}^{a}$$
s. t. $D \leq E \leq U$ (8)

其中: E 为待修正单元的弹性模量; D 和 U 分别为其下限和上限。

通过对式(7)的 Taylor 一阶展开,可得

$$R(E) = S\{\Delta p\} \tag{9}$$

$$\Delta E = S^{+} R(E) \tag{10}$$

其中:S 为弹性模量关于模态应变能的一阶灵敏度矩阵。

因此修正如下的迭代过程: a. 测量试验对象前 3 阶振型 $\{\Phi_j^m\}$,并通过 Neumann 级数扩充,得到 $\{\Phi_j^s\}$;b. 将 $\{\Phi_j^s\}$ 代入式(1),得到试验所测各单元的 模态应变能 MSE $_{jr}^s$,并计算残差 R;c. 计算模态应变能的灵敏度矩阵 S;d. 通过式(9)求解出参数改变量 ΔE ;e. 得到新的 E 值,迭代直至满足收敛标准。

关于模态应变能的一阶灵敏度计算结果,可参考文献[9],此处不再详述。

2 试 验

2.1 有限元模型的建立

为验证该识别方法的有效性,安排如下试验:试

验对象为两块厚 3 mm 的矩形钢板,以两枚 5 mm 螺栓将其首尾相接,如图 3 所示。基于试验室测量条件,设定其 T_s 值为 60 N·m, T_{min} 值为 20 N·m。

图 3 矩形连接板

Fig. 3 Connecting rectangular plate

根据前文所述的螺栓有限元模型建立思路,基于 Patran & Nastran 平台建立如图 4 所示的有限元模型,钢板均使用 2Dshell 单元表示,其厚度为 3 mm,经 固有 频率的验证,其弹性模量为207.3 GPa。在螺栓处建立如图 4 所示的 RBE2 与BEAM 单元以表征螺栓连接,以 BEAM 单元的弹性模量表征螺栓连接的松紧程度,其初始值设为210 GPa。该模型单元数为1538,节点数为2006。

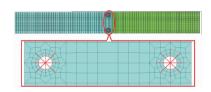


图 4 有限元模型

Fig. 4 Finite element model

2.2 扭矩降低的识别

在试验对象的模态数据测量中,将图 5 中红线内的范围视作一个单元,作为螺栓连接的检测单元,由于该单元位于两块钢板的连接处,其对于螺栓连接的松紧很敏感。当螺栓发生松动时,接合面间由干摩擦状态转变为滑动摩擦,与紧固状态下相比,该检测单元的模态特性将更加接近于两块独立板。

在两节点处建立测点 1,2,其余自由度态通过 振型扩充的方式补全。试验共安排 6 种不同工况, 分别给以螺栓连接不同的残余扭矩值,其中一组扭 矩为 100 N·m下的试验数据为理想紧固数据,除 理想紧固工况外,每个工况下对试验对象进行 10 组

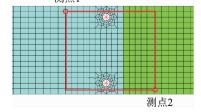


图 5 试验测点安排

Fig. 5 Arrangement of measurement nodes

测量,具体工况安排如表1所示。

表 1 试验的工况安排

Tab. 1 Work conditions of experimental

_			
	工况编号	测量组号	1号螺栓初始扭矩/(N•m)
	理想紧固		100
	1	$1\sim 10$	80
	2	$11 \sim 20$	60
	3	$21 \sim 30$	40
	4	$31 \sim 40$	20
	5	$41 \sim 50$	用手拧紧

该试验目标为以锤击法测得检测单元的前 3 阶模态振型 $\{\Phi_j^m\}$,每点振型均取三次测量平均值,并通过 Neumann 级数扩充得到扩充振型 $\{\Phi_j^s\}$,其中 M_{ss} , K_{ss} , K_{sm} , M_{mm} 等量均可通过计算获得。根据式(1,2),计算各次测量中,螺栓检测单元的前 3 阶模态应变能向量 MV_j^s ,以理想紧固状态下的值为 MV_j^s ,并将其与 MV_j^s ,代入式(3),计算得到各次测量的 MSEVS"值,其结果如图 6 所示。

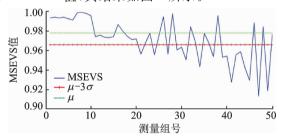


图 6 11~50 组测量的 MSEVS" 值

Fig. 6 MSEVS" values of the 11st~50th group

为减小误差干扰,以残余扭矩值等于 T_s ,即第 2 工况下的 MSEVSⁿ 值为样本,建立正态分布 $Z \sim N(\mu, \sigma^2)$,其中 μ 为样本的均值, σ^2 为方差,其值根据下式计算

$$\mu = \frac{1}{10} \sum_{n=1}^{10} MSEVS^n$$
 (11)

$$\sigma = \sqrt{\frac{1}{10 - 1} \sum_{n=1}^{10} (MSEVS^{n} - \mu)}$$
 (12)

依据正态分布的特性,若某次测量的 MSEVS" 值低于 μ ,认为该次测量中发生松动的可靠度为 50%;若低于 μ -3 σ ,认为该次测量中发生松动的可靠度为 99%。在上述试验结果中,将第 $11\sim20$ 组的结果作为样本,其 μ , μ -3 σ 值已在图 6 中分别以绿色虚线、红色加号线标出。从结果可得出以下结论:

- 1) $1 \sim 10$ 组的 MSEVS" 值均在 0.98 以上,表明该工况下螺栓连接状况良好,与理想紧固工况极为接近;
- 2) $11\sim20$ 组的 MSEVS" 值比 $1\sim10$ 组普遍要低,但均大于 μ 值,表明该工况下螺栓的连接状况已不如 $1\sim10$ 组,但其残余扭矩仍未小于 T_s 值,判定为未发生松动;

3) $21\sim50$ 组的 MSEVS" 值波动剧烈,大部分测量组的结果已低于 μ 值,部分低于 μ —3 σ 值,表明该工况下螺栓已发生松动,残余扭矩值低于 T_s ,这一现象符合预期结果,但 MSEVS" 值波动剧烈,极大地影响了对数据的判断。

造成上述结果数据剧烈波动的原因有:

- 1)测量误差,主要是各组测量中的随机误差,由于每组测量中各点的振型均取三次测量的平均值,因此随机误差被有效抑制;
- 2) 螺栓连接中的非线性特征,作为一种局部损伤,由于摩擦和间隙的存在,螺栓接连具有非线性与时变性的特点^[6],且损伤越严重,结构的非线性特征体现越强烈^[13-14]。

图 6 中 MSEVS" 值的波动呈现一定规律,即不同工况下的 MSEVS" 值越小,相应其波动也越剧烈,针对螺栓松动形式的局部损伤,该结果符合损伤程度与非线性体现程度间的关系,图 6 中的数值波动主要来源于螺栓连接中的非线性特征。

2.3 螺栓残余扭矩值的识别

在检测到扭矩发生降低后,需要进一步识别其 残余扭矩值。此处进行基于模态应变能灵敏度的修 正步骤,以测得的螺栓检测单元前三阶振型为基础, 识别螺栓连接中 BEAM 单元的弹性模量,从而识别 其残余扭矩,并判断松动螺栓是否需要处理。

2.3.1 试验测量与数据处理

在图 6 的结果中,第 3,4,5 工况下均有若干测量组的 MSEVS" 值低于 μ 一 3 σ ,为了识别这些测量组各自的残余扭矩值,识别其 BEAM 单元弹性模量,并对照残余扭矩为 T_{\min} 时的值,判断其残余扭矩是否低于 T_{\min} 。

在此识别阶段中,以测得模态应变能为目标响应,基于模态应变能的灵敏度修正。考虑到第 4 工况下的扭矩值与 T_{min} 相同,此处将第 4 工况下第 31~40 测量组所识别的 BEAM 单元弹性模量值作为样本,并计算该样本的 μ , σ 的值,其结果如表 2 所示。

表 2 31~40 组的弹性模量值

Tab. 2 Elastic modulus of 31st~40th groups

测量组号	弹性模量/GPa	测量组号	弹性模量/GPa
31	149.80	36	139.86
32	151.06	37	142.38
33	140.28	38	146.09
34	151.16	39	151.76
35	147.28	40	151.86

由于各组的 BEAM 单元弹性模量识别过程相同,此处仅在第 3,4,5 工况下各选择一个测量组进行识别,分别为第 21,31,41 组。在初始有限元模型中,其 BUSH 单元弹性模量均设为 210 GPa,其识别过程如图 7 所示。

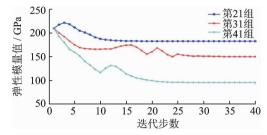


图 7 第 21,31,41 组的 BUSH 单元弹性模量识别 Fig. 7 Equivalent element stiffness updating of 21st, 31st,41st group

各测量组的最终识别结果以及下第 $31\sim40$ 测量组结果的 $\mu-3\sigma$ 值如表 3 所示。

表 3 各组的识别结果

Tab. 3 Elastic modulus of 21st, 31st, 41st group

测量组号	BEAM 单元弹性模量值/GPa
21	182.69
31	149.80
41	93.10
μ -3 σ	132.79

从表 3 的识别结果可得出,第 21,31 测量组的 BUSH 单元弹性模量大于 μ -3 σ 值,即其残余扭矩大于 T_{\min} ,螺栓连接虽已发生松动但不是必须处理; 而第 41 测量组的 BEAM 单元弹性模量值远低于样本 μ -3 σ 值,必须对其采取相应措施。

2.3.2 识别结果合理性验证

为验证此修正结果的合理性,在此比较试验测试与修正前后的模态置信度(modal assurance criterion,简称 MAC),通常采用以下定义

 $\mathrm{MAC}_{ij} = |\Phi_i^{rT} \Phi_j^a|^2 / (\Phi_i^{rT} \Phi_i^r) (\Phi_j^{aT} \Phi_j^a)$ (13) 其中: Φ_i^r 为试验测得的第 i 阶振型; Φ_j^r 为有限元分析模型的第 j 阶振型; MAC_{ij} 为 Φ_i^r , Φ_j^a 之间的相关系数。

由于整体值对于螺栓松动不够敏感,此处选择螺栓检测单元的振型做局部 MAC 值计算。表 4 为修正后,第 21,31,41 测量组的前 3 阶局部 MAC 值提升结果。

从表 4 结果可以看出,对于松动越强烈的螺栓,该修正对其 MAC 值提升效果也越好;而对于残余扭矩较大的螺栓,该修正对其 MAC 值提升效果较小。经过修正后的有限元模型更好地表示了不同工况下的螺栓连接状态,证明该识别结果是合理的。

表 4 修正后 MAC 值提升结果 Tab. 4 Improving of MAC after updating

组号	最低 MAC 提升	最高 MAC 提升	平均 MAC 提升
21	0.067	0.129	0.103
31	0.073	0.164	0.112
41	0.075	0.334	0.187

3 结束语

笔者所提方法为螺栓连接设定其残余扭矩的松动值 T_s 与最低值 T_{min} ,并实时测量其模态参数,在第 1 阶段识别中发现其发生松动,则在第 2 阶段识别其 BEAM 单元弹性模量,如低于 T_{min} 所对应的弹性模量,则发出警报。该方法在试验室条件下中准确率较高,未考虑实际应用中的大噪声环境,为螺栓松动状态的长期在线识别提供了一种方法。

参 考 文 献

[1] 王涛,杨志武,邵俊华,等.基于压电阻抗技术的螺栓 松动检测试验研究[J].传感技术学报,2014,27(10): 1321-1325.

Wang Tao, Yang Zhiwu, Shao Junhua, et al. Research on bolt loosen detection based on piezoelectric impedance technology [J]. Chinese Journal of Sensors and Actuators, 2014, 27 (10): 1311-1325. (in Chinese)

- [2] 王涛,罗毅,刘绍鹏,等.基于压电主动传感方式的螺栓松动检测实验研究[J].新型工业化,2013,3(7):1059-1063.
 - Wang Tao, Luo Yi, Liu Shaopeng, et al. Bolt loosening detection based on piezoelectric active sensing technology[J]. Chinese Journal of Sensors and Actuators, 2013, 3(7): 1059-1063. (in Chinese)
- [3] Huda F, Kajiwara I, Hosoya N, et al. Bolt loosening analysis and diagnosis by non-contact laser excitation vibration tests[J]. Mechanical Systems & Signal Processing, 2013, 40(2): 589-604.
- [4] He K, Zhu W D. Detecting loosening of bolter connections in a pipeline using changes in natural frequencies [J]. Journal of Vibration and Acoustics, 2014, 136 (3): 034503.
- [5] Todd M D, Nichols J M, Nichols C J, et al. An assessment of modal property effectiveness in detecting bolted joint degradation: theory and experiment [J]. Journal of Sound & Vibration, 2004, 275(3/5):1113-1126.
- [6] 徐超,周帮友,刘信恩,等. 机械螺栓连接状态监测和 辨识方法研究进展[J]. 强度与环境, 2009, 36(2):28-36. Xu Chao, Zhou Bangyou, Liu Xinen, et al. A review

- of vibration based condition monitoring and indentification for mechanical bolted joints [J]. Structure & Environment Engineering, 2009, 36 (2): 28-36. (in Chinese)
- [7] Zhang M, Jiang Y, Lee C H. Finite element modeling of self-loosening of bolted joints[J]. Journal of Mechanical Design, 2007, 129(2): 218-226.
- [8] 杨海平,王良模,彭曙兮,等. 基于 CAE 技术的某越 野车车架分析[J]. 机械科学与技术,2011,30(6): 1001-1006.
 - Yang Haiping, Wang Liangmo, Peng Shuxi, et al. Analysis of the off-road vehicle's frame based on CAE [J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(6):1001-1006. (in Chinese)
- [9] 颜王吉,任伟新.基于代数算法的单元模态应变能灵敏度分析[J].振动与冲击,2010,29(4):34-39. Yan Wangji, Ren Weixin. Element modal strain energy sensitivity analysis based on an efficient algebraic method [J]. Journal of Vibration and Shock, 2010, 29 (4): 34-39. (in Chinese)
- [10] 严平,李胡生,葛继平,等.基于模态应变能和小波变换的结构损伤识别研究[J].振动与冲击,2012,31(1);121-126.

Yan Ping, Li Husheng, Ge Jiping, et al. Structural damage identification based on modal strain energy and wavelet transformation [J]. Journal of Vibration and Shock, 2012, 31(1): 121-126. (in Chinese)

- [11] Yang Q W. Model reduction by neumann series expansion[J]. Applied Mathematical Modelling, 2009, 33 (12):4431-4434.
- [12] 李效法. 基于灵敏度分析的模型修正研究及其实现 [D]. 南京:南京航空航天大学,2007.
- [13] 高桂丽,李大勇,董静薇,等. 铝合金薄板疲劳裂纹的 非线性声学特性[J]. 机械工程学报,2010,46(18):71-76.
 - Gao Guili, Li Dayong, Dong Jingwei, et al. Nonlinear acoustic characteristics of fatigue cracks in aluminum alloy sheet [J]. Journal of Mechanical Engineering, 2010, 46(18): 71-76. (in Chinese)
- [14] Zaitsev V, Nazarov V, Gusev V, et al. Novel nonlinear-modulation acoustic technique for crack detection [J]. Nondestructive Testing and Evaluation International, 2006, 39(3):184-194.

第一作者简介:王子斌,男,1991年8月生,硕士生。主要研究方向为基于模型的损伤识别、有限元模型修正方法。 E-mail: 18351952565@163.com

通信作者简介:郭勤涛,男,1970年2月生,博士、副教授。主要研究方向为机械结构动态设计及优化、模型修正、振动控制等。

E-mail: guo_qintao@nuaa. edu. cn