Journal of Vibration, Measurement & Diagnosis

doi:10.16450/j.cnki.issn.1004-6801.2019.03.019

装载机工作装置载荷识别模型与载荷测取方法。

万一品1, 宋绪丁1, 郁录平1, 员征文2

(1.长安大学道路施工技术与装备教育部重点实验室 西安,710061)(2.徐工集团江苏徐州工程机械研究院 徐州,221004)

摘要 为了研究装载机铲装作业时所受外载荷大小及变化特性,根据铲斗铰点力与斗尖力关系建立工作装置外载 荷识别模型。以国产 LW900K 装载机为试验样机,提出了三向力销轴传感器法和动臂截面弯矩法两种载荷制取方 法,进行典型作业姿态下的载荷验证和铁矿粉物料下的载荷测试试验。结果表明:提出的三向力销轴传感器法和 动臂截面弯矩法都能够准确获取外载荷识别所需要的铰点载荷,销轴传感器法结果精度高于动臂截面弯矩法;试 验样机工作装置所受大载荷出现在物料铲掘和卸载时刻,测得卸料时的惯性冲击载荷峰值约为 400 kN;通过雨流 计数得到外载荷合力的均值服从正态分布,幅值服从三参数威布尔分布。载荷测试和分析结果能够有效解决装载 机工作装置外载荷难以获取的问题,为载荷谱编制和疲劳特性分析提供依据。

关键词 装载机;工作装置;载荷识别模型;载荷测取 中图分类号 TH243.1

引 言

装载机是一种实现散状物料铲装及运输作业的 土方机械,获得反映装载机工作装置受力特性的外 载荷,是载荷谱编制与疲劳寿命预测的关键基础^[1]。

装载机在铲装物料时外载荷直接作用在铲斗 上,铲斗底板是主要受力位置,在分析装载机外载荷 时,可简化为铲斗的斗尖载荷,并将其视为工作装置 所受外载荷。文献[2]分析了装载机工作装置外载 荷计算方法,推导了载荷计算数学经验公式。文 献[3]分析了不同铲掘阻力下工作装置结构强度的 变化,获得了插入阻力作用点位置与结构强度变化 的关系。文献[4-5]对装载机工作装置在正载假设 条件下的静力学和动力学特性进行研究,模拟了工 作装置在实际作业过程的受力特性。文献「6]基于 离散元法(discrete element method,简称 DEM)模 拟铲斗插入物料的过程,得到工作装置所受物料阻 力的基本变化趋势。但是基于仿真研究和静态设计 的产品已难以满足高性能比和高可靠性的要求,基 于真实外载荷的动态抗疲劳设计成为解决上述问题 的重要途径之一。文献「7〕通过装载、运输和卸载矿 石物料试验过程中实测的油缸压力的变化来研究铲 斗所受外载荷,但是未能给出所受外载荷的表示形 式。赵云良^[8]通过试验研究了石灰岩物料铲装作业 过程中铲斗所受载荷特性,给出了水平插入阻力与 插入物料深度的数学关系。文献[9]在理论上对装 载机铲斗在铲掘作业过程中的载荷进行了分段识 别,并给出了不同铲掘时刻铲斗上所受阻力的经验 公式。文献[10]分析了铲斗与物料的相互作用特 点,确定了铲掘作业过程中铲斗受力的影响因素,仿 真得到铲斗所受载荷为沿斗齿的切向、法向和侧向 三个方向阻力的合力。现有文献给出的工作装置载 荷识别结果多为经验公式,需要考虑物料的各种属 性参数,所得结果与实际载荷相差很大。通过实测 外载荷研究构件的力学特性已得到广泛应用,飞机 结构载荷测试方法与疲劳性能研究已相对成 熟[11-12],装载机外载荷的测试和疲劳研究多集中在 传动系统[13]。

由于缺乏合适的装载机工作装置外载荷时间历 程制取方法,理论和经验计算所得结果无法准确反 映装载机铲装作业这一动态作业过程,因此,笔者根 据铲斗铰点力与斗尖所受外载荷关系,建立装载机 工作装置外载荷识别模型。基于载荷识别结果提出 三向力销轴传感器法和动臂截面弯矩法两种工作装 置载荷时间历程制取方法,并通过典型作业姿态加

^{*} 国家科技支撑计划资助项目(2015BAF07B02);中央高校基本科研业务专项资金资助项目(300102259304) 收稿日期:2017-05-04;修回日期:2017-06-27

载试验分析两种测试方法的精度。基于销轴传感器法,搭建 LW900K 装载机载荷测试系统,对应铲装 作业过程分析铲斗铰点载荷和工作装置外载荷时间 历程。提出的测试方法为工程机械臂架结构载荷测 试提供多方案选择,所得结果为载荷谱编制和疲劳 分析提供依据。

1 装载机外载荷识别模型

装载机工作装置由动臂、铲斗、摇臂和连杆组成,工作装置在摇臂油缸和动臂油缸的联合作用下 实现散状物料的铲装、运输和卸料作业。装载机工 作装置结构如图1所示。

1-铲斗; 2-连杆; 3-摇臂; 4-摇臂油缸; 5-动臂; 6-动臂油缸; 7-前车架

图 1 装载机工作装置结构组成 Fig. 1 Structure of loader working device

装载机铲装物料时由动臂油缸和摇臂油缸提供 动力用于克服铲斗上的物料阻力,将装载机工作装 置作业过程视为瞬时准静态过程,根据工作装置铰 点力之间的力学关系,以平行水平地面为 x 方向, 垂直地面向上为 y 方向,建立工作装置上铲斗铰接 点载荷与油缸压力之间的关系模型,如图 2 所示。

图 2 装载机铲斗铰点与油缸铰点力学关系示意图

Fig. 2 Mechanical relationship between loader bucket hinge points and cylinder hinge points

如图 2 所示, F_E 和 F_I 分别为摇臂油缸和动臂 油缸铰点力, F_{Ax} , F_{Dx} , F_{Dx} , F_L 和 F_I ,为动臂上 各铰接点受力在 x 和 y 方向上的分力,铲斗上铰点 A 处受力与 F_{Ax} 和 F_{Ay} 等大反向; F_{Cx} , F_{Cy} , F_{Ex} 和 F_{Ey} 为摇臂对应铰接点受力在 x 和 y 方向上的分 力, a_1 , a_2 和 a_3 分别为铰点 E, I 和 C 所受力与 y 轴 方向的夹角; F_B 为铰点 B 处铲斗受力。各铰点之 间的距离在 x 和 y 方向上的投影分别用 x_{ij} 和 y_{ij} 表 示,i 和 j 为铰点标号。

对摇臂、动臂结构进行力学分析,分别取铰点 D 和铰点 G 处力矩平衡,如式(1)和式(2)所示

$$M_{D} = F_{Ex} y_{DE} + F_{Ey} x_{DE} - F_{Cx} y_{CD} - F_{Cy} x_{CD} = F_{E} (y_{DE} \sin \alpha_{1} + x_{DE} \cos \alpha_{1}) - F_{C} (y_{CD} \sin \alpha_{2} + x_{CD} \cos \alpha_{2})$$
(1)
$$M_{G} = F_{Ax} y_{AG} + F_{Ay} x_{AG} + F_{Dx} y_{DG} + F_{Dy} x_{DG} - F_{Lx} y_{IG} - F_{L$$

$$F_{Iy}x_{IG} = F_{Ax}y_{AG} + F_{Ay}x_{AG} + F_{Dx}y_{DG} + F_{Dy}x_{DG} - F_{I}(y_{IG}\sin\alpha_{3} + x_{IG}\cos\alpha_{3})$$
(2)

得较点 B、铰点 C 和铰点 E 受力关系如式(3) 所示,铰点 I、铰点 A、铰点 C 和铰点 E 受力关系如 式(4)所示

$$F_{B} = F_{C} = \frac{y_{DE} \sin\alpha_{1} + x_{DE} \cos\alpha_{1}}{y_{CD} \sin\alpha_{2} + x_{CD} \cos\alpha_{2}} F_{E}$$
(3)

$$F_{I} = \left(\frac{1}{y_{IG} \sin\alpha_{3} + x_{IG} \cos\alpha_{3}}\right) \left[F_{Ax} y_{AG} + F_{Ay} x_{AG} + (F_{E} \sin\alpha_{1} + F_{C} \sin\alpha_{2}) y_{DG} + (F_{E} \cos\alpha_{1} + F_{C} \cos\alpha_{2}) x_{IG}\right]$$
(4)

$$F_{L} = \left(F_{E} \sin\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \cos\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \cos\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \cos\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \cos\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{2} + F_{C} \sin\alpha_{2}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{1}\right) F_{L} = \left(F_{E} \cos\alpha_{1} + F_{C} \sin\alpha_{1}\right) F_{L} = \left(F_{E} \cos\alpha_$$

对摇臂结构取受力平衡,如式(5)所示

 $\left(F_{Dx} = F_{Ex} + F_{Cx} = F_E \sin\alpha_1 + F_C \sin\alpha_2\right) \tag{5}$

 $|F_{Dy} = F_{Ey} + F_{Cy} = F_E \cos \alpha_1 + F_C \cos \alpha_2 \qquad (3)$

在装载机工作装置姿态确定时,动臂油缸和摇 臂油缸铰点力与铲斗上铰点力之间的对应关系可以 通过式(3)和式(4)确定。将铲斗结构从工作装置中 隔离出来,以图 2 中所示的 AB 铰点中心孔连线为 Y 方向,垂直 AB 铰孔连线为 X 方向,垂直 XY 方向 所在平面为 Z 方向,建立铲斗三维局部坐标系,记 铲斗上的 3 个铰接点在铲斗局部坐标系下在 X 和 Y 方向的分力分别为 F_{x1} , F_{y1} , F_{x2} , F_{y2} , F_{x3} 和 F_{y3} , 以及动臂与铲斗铰点处的侧向力 F_{z1} 和 F_{z2} 。由装 载机铲斗斗尖载荷得到工作装置外载荷识别模型如 图 3 所示。

将铲斗 3 个铰接点上受到的外力 F_{x1} , F_{y1} , F_{Z1} , F_{x2} , F_{y2} , F_{Z2} , F_{x3} 和 F_{y3} 简化到铲斗中心斗齿 处,得到载荷 F_x , M_x , F_y , M_y 和 F_z 作为装载机工 作装置所受外载荷。 F_x 为工作装置插入物料时所 受的水平外载荷; F_y 为工作装置掘起物料阻力所受 垂向外载荷; F_z 为工作装置所受侧向外载荷; M_x 和 M_y 为物料左右不均勾引起的偏载阻力矩。记动

图 3 装载机工作装置外载荷识别模型 Fig. 3 Load identification model of loader working device

臂与铲斗铰点与连杆与铲斗铰点距离在 Z 方向的 投影为1,得到工作装置外载荷与铲斗铰点载荷关 系如下

$$\begin{bmatrix} F_{X} \\ F_{Y} \\ F_{Z} \\ M_{X} \\ M_{Y} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ l & 0 & 0 & -l & 0 & 0 & 0 \\ 0 & l & 0 & 0 & -l & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} F_{X1} \\ F_{Y1} \\ F_{Z1} \\ F_{X2} \\ F_{Y2} \\ F_{Z2} \\ F_{X3} \\ F_{Y3} \end{bmatrix}$$
(6)

因此, 铲斗铰接点上受到的外力 F_{x1} , F_{y1} , F_{Z1} , F_{x2} , F_{y2} , F_{Z2} , F_{x3} 和 F_{y3} 为装载机工作装置外载荷 识别模型求解和载荷时间历程制取的关键。

2 外载荷制取方法

由工作装置外载荷识别模型结果可知,装载机 作业过程中受到正载、偏载和侧载作用于动臂与铲 斗的两个铰接点处,提出三向力销轴传感器法和动 臂截面弯矩法来获取铲斗与动臂铰点载荷。连杆与 铲斗铰接点处的载荷可以通过连杆的受力获取,将 连杆视为二力杆,按照受拉与受压测试原理设计传 感器^[14]。在动臂与铲斗铰接点处设计分别测试 *X*, Y和 *Z*方向力的销轴传感器,其结构原理如图 4 所 示^[15]。

用三向力销轴传感器代替原有销轴,销轴传感器上选取两个截面,两截面与 X 和 Y 方向的交点上分别依次粘贴两组应变片 R_{x1}, R_{x2}, R_{x3}, R_{x4}, R_{y1}, R_{y2}, R_{y3}和 R_{y4}, 对两组应变片分别组桥来测量对应 方向的销轴力^[14]。在侧向力测力轴上选取一个截 面,依次粘贴应变片 R_{z1}, R_{z2}, R_{z3}和 R_{z4}, 组全桥来 测量销轴 Z 方向力。

图 4 三向力销轴传感器结构原理图 Fig. 4 Structure and principle of the pin-shaft sensor

三向力销轴传感器能够直接测量铰接点处销轴 力,但是对于不同尺寸型号的铰孔,需要分别设计三 向力销轴传感器。采用动臂截面弯矩法则无需进行 复杂的动臂改装与销轴传感器设计,在动臂与铲斗 铰接点处末端,取近似平行的两个截面 S-S 和 R-R, 以两截面中心连线为 X'方向,过动臂板中心面且垂 直 X'方向为 Y'方向,同时垂直 X'和 Y'方向为 Z'方 向,建立动臂局部坐标系,则动臂与铲斗铰点处的力 $F_{X'1},F_{Y'1},F_{Z'1},F_{X'2},F_{Y'2}$ 和 $F_{Z'2}$ 由动臂截面弯矩来 获得。动臂截面弯矩传感器结构原理如图 5 所示。

图 5 动臂截面弯矩传感器结构 Fig. 5 Structure of torque sensor for boom section

在动臂两个截面上分别依次粘贴 3 组应变片: $R'_{21}, R'_{22}, R'_{23}, R'_{24}; R'_{11}, R'_{12}, R'_{13}, R'_{14}; R'_{21}, R'_{22}, R'_{23},$ $R'_{24}, 分别组桥测试截面弯矩。通过截面 T-T 和 S-S$ 的垂向弯矩 M_1, M_2 和 T-T 截面的侧向弯矩 M_3, U 及两个截面到动臂与铲斗铰点中心孔的距离 l_1, l_2 和 l_3 , 可得 $F_{X'1}, F_{Y'1}, F_{Z'1}$ 与截面弯矩之间的关系 如下

$$\begin{cases} F_{X'1} = \frac{l_2 M_2 - l_5 M_1}{l_1 (l_3 - l_2)} \\ F_{Y'1} = \frac{M_2 - M_1}{l_3 - l_2} \\ F_{Z'1} = M_3 / l_2 \end{cases}$$
(7)

动臂截面弯矩与传感器桥路输出电压之间为正 比关系,可以采用相同的方法得到动臂另一侧的铰 点处受力 $F_{X'2}$, $F_{Y'2}$ 和 $F_{Z'2}$ 。 以 LW900K 装载机为试验样机,设计三向力销 轴传感器、动臂截面弯矩传感器和连杆力传感器,通 过标定试验得到传感器输入输出特性,标定工装与 标定试验如图 6 所示。

(a) 连杆力传感器标定(a) Calibration of connecting rod force sensor

(b) 三向力销轴传感器标定(b) Calibration of the pin-shaft sensor

(c) 动臂截面弯矩传感器标定(c) Calibration of boom bending moment sensor

图 6 载荷测试传感器标定试验示意图 Fig. 6 Schematic diagram of load test sensor calibration

标定试验中所施加的力均为阶梯载荷,多次标 定取各级载荷下传感器输出电压信号的均值,并对 结果进行拟合,得到连杆所受外力F与电桥输出电 压之间的关系为

$$F = 0.196U_L - 0.191 \tag{8}$$

动臂与铲斗铰接点处三个方向所受外力与销轴 传感器电桥输出电压之间的关系为

$$\begin{cases} F_{X1} = 0.121U_{X1} + 7.524 \\ F_{Y1} = 0.114U_{Y1} + 5.451 \\ F_{Z1} = 0.052U_{Z1} - 0.163 \\ F_{X2} = 0.127U_{X2} - 1.159 \\ F_{Y2} = 0.132U_{Y2} - 7.601 \\ F_{Z2} = 0.051U_{Z2} - 0.115 \end{cases}$$
(9)

动臂上三个方向力与弯矩截面传感器对应电桥 输出电压之间的关系,如式(10)所示 $\begin{cases} F_{X'1} = 0.501U_2 - 0.692U_1 + 3.607 \\ F_{Y'1} = 0.275U_2 - 0.287U_1 + 0.668 \\ F_{Z'1} = 0.051U_3 - 0.262 \\ F_{X'2} = 0.481U_5 - 0.650U_4 + 6.102 \\ F_{X'2} = 0.264U_5 - 0.269U_4 + 1.365 \\ F_{X'2} = 0.049U_6 - 0.352 \end{cases}$ (10)

3 载荷测试与特性分析

3.1 典型姿态下的载荷验证

为了验证三向力销轴传感器和动臂截面弯矩传 感器的准确性和可靠性,通过常用的压力传感器获 取动臂油缸和摇臂油缸的压力。安装三向力销轴传 感器、连杆传感器、动臂截面弯矩传感器以及油缸压 力传感器,如图 7 所示。

图 7 测试样机与传感器安装 Fig. 7 Test prototype and sensor installation

铲装 8 t 的标准块,选定掘起物料、运输物料、 举升物料以及举升物料至最高位置 4 个典型作业姿态,测取动臂和摇臂油缸位移,确定姿态参数。装载 机铲装标准重物块时,偏载和侧载对装载机工作装 置的影响几乎可以忽略,4 种典型姿态下工作装置 姿态参数如表1 所示。计算 4 种典型作业姿态下油 缸铰点实测力和铲斗及动臂上铰点实测力之间的对 应关系,如表 2 所示。

由表2可知:三向力销轴传感器法和动臂截面 弯矩法所得4种典型作业姿态下油缸铰接点处载荷 值均小于油缸压力传感器实测值,这是因为油缸压 力传感器的测量值包含了动臂结构自重以及各铰接 点处的摩擦阻力;三向力销轴传感器法所得油缸力 与实测值之间的最大误差为3.09%,而动臂截面弯 矩法所得油缸力与实测值的误差在10%左右,这是 因为销轴传感器是对铰点外力的直接测量,测量精 度高,而动臂截面弯矩法通过动臂截面弯矩与力学 换算得到铰点载荷,将变截面的动臂板视为一个近

表1 工作装置典型作业姿态参数

Tab. 1 Typical operating attitude parameters of working device

作业姿态 -	油缸位移/mm		角度参数		距离参数/mm										
	动臂	摇臂	α_1	α_2	α_3	x_{DE}	x_{CD}	x_{AG}	x_{DG}	$x_{I\!G}$	${\cal Y}_{DE}$	YCD	\mathcal{Y}_{AG}	\mathcal{Y}_{DG}	Y IG
掘起姿态	1 415	1 307	81	59	84	243.4	156.7	2 718	2 070	1418	669.1	989.7	1 768	595.1	994.1
运输姿态	1 550	1 695	71	67	77	219.9	139.4	2 961	2 148	1 616	677.2	992.3	1 321	151.9	621.7
举升(水平)姿态	1 889	1 695	50	48	63	311.9	156.7	3 234	2 106	1 722	640 . 1	898.7	228.7	449.3	182.3
举升(最高)姿态	2 200	1 695	17	15	44	680.7	778.4	2 826	1 522	1 556	208.6	630.9	1 524	1 523	760.1

表 2 典型作业姿态载荷验证试验结果 Tab. 2 Load verification test results of typical operating attitude

姿态 -	实测油	缸力/kN		销轴力法派	由缸铰点力		截面弯矩法油缸铰点力				
	F_I	F_E	$F_{\rm II}/{ m kN}$	误差/%	F_{E1}/kN	误差/%	F_{I2}/kN	误差/%	F_{E2}/kN	误差/%	
掘起姿态	209.8	501.4	205.3	2.17	489.5	2.38	190.1	9.41	449.7	10.30	
运输姿态	181.7	465.8	177.2	2.43	451.4	3.09	162.6	10.50	403.5	13.40	
举升(水平)姿态	185.6	387.1	180.3	2.84	378.6	2.19	162.8	12.30	350.4	9.48	
举升(最高)姿态	164.6	455.5	161.2	2.07	449.9	1.22	146.4	10.90	409.2	10.20	

似等截面结构,所得结果误差明显大于三向力销轴 传感器测试误差。在测试精度允许的范围内,截面 弯矩测试方法只需要对动臂截面进行贴片组桥,测 试相对便捷。

3.2 载荷时间历程的制取

在徐工铲运试验场内,采用精度高的三向力销 轴传感器法获取 LW900K 装载机所受外载荷,模拟 L形铲装作业路线^[14]采集铲装铁矿粉物料的载荷, 试验样机铲装作业如图 8 所示。

图 8 铲装铁矿粉物料载荷测试试验 Fig. 8 Load test of iron ore material

根据传感器标定试验结果,得到铲装作业动臂 与铲斗铰点以及连杆与铲斗铰点 $F_{x_1}, F_{y_1}, F_{z_1},$ $F_{x_2}, F_{y_2}, F_{z_2}, F_{x_3}$ 和 F_{y_3} 动态载荷时间历程如图 9 所示。

(a) 动臂与铲斗左侧销轴载荷

(a) Load on the left pin of the boom and bucket

Fig. 9 Load time history each hinge point

由图 9 可知,装载机铲斗上 3 个铰点处受力的 变化规律基本保持一致,根据油缸位移变化可以将 一个铲装作业周期分为空载段、铲掘段、重载运输段 和卸料段^[14]。在空载段,各铰点载荷呈一条直线; 在铲掘段 X 方向上分力先达到最大值,之后 X 方向 分力开始减小而 Y 方向分力增大,这与实际铲装作 业中一次铲装作业法的过程相对应,铲斗先插入物 料最深,此时 X 方向受力逐渐增大,然后快速掘起 物料,Y 方向分力开始增大;重载运输段各铰点载荷 也呈直线状,但载荷均值明显大于空载运输段;在卸 料段,3 个铰点载荷均受到大载荷的作用,大载荷出 现在同一时刻,并且载荷时间作用很短,载荷峰值很 大,属于一种冲击载荷。根据外载荷识别模型以及 实测各铰点载荷,可以得到 LW900K 装载机工作装 置外载荷时间历程如图 10 所示。

由图 10 可知,根据载荷识别模型得到的工作装 置外载荷时间历程中,由油缸位移变化判断斗尖载 荷所处铲装作业周期段以及工作装置铲装作业姿 态,工作装置所受外载荷的峰值出现在铲装作业段 和卸料作业段。铲装作业段外载荷 X 方向分力值 最大,约为220 kN;在卸料作业段外载荷 X 和 Y 方 向的力均达到最大,最大值约为400 kN。工作装置 所受侧向力即 Z 方向载荷最大值约为 25 kN,而由 铲斗内物料左右不均造成的偏载载荷 $M_{\rm X}$ 和 $M_{\rm Y}$ 最 大值约为 60 kN · m。铲斗铰点载荷及工作装置外 载荷变化趋势与装载机铲装作业过程保持一致,所 得载荷反映了装载机所受外载荷的变化规律,实现 了载荷的定量分析。与文献「1,6,10]对工作装置 及铲斗所受外力的分析不同的是,实测铲斗铰点载 荷和斗尖载荷在卸料作业段均出现了明显的大载 荷。利用油缸位移确定卸料段大载荷出现时刻,装 载机工作装置作业姿态如图 11 所示。

卸料时刻,铲斗向下倾斜,物料沿铲斗底部向下 滑落,此时物料对铲斗底部的摩擦力以及物料对铲 斗底部压力在 X 方向上的分力共同影响 F_x 的大 小,而 F_y 的大小主要由物料对铲斗底部压力在 Y方向上的分力所决定。对于 LW900K 装载机,其额 定载重为 9 t,对铲斗底部压力约为 90 kN,这与实 测到的 F_y 最大值 400 kN 并不吻合。分析装载机 在铲装试验卸料时刻的作业状态,发现卸料时刻铲 斗位于最高位,摇臂油缸快速回缩,铲斗由重载运输 姿态开始绕铲斗与动臂铰点旋转,在铲斗底板开始

图 11 卸料时刻装载机作业姿态 Fig. 11 Operating attitude of loader on unloading time

低于水平线时,铲斗内物料重力加速了铲斗旋转,卸 料瞬间铲斗快速静止于卸料位置,由于惯性作用在 铲斗铰接点处产生了卸料冲击载荷。对应图 10 卸 料时刻铲斗铰点载荷,连杆与铲斗铰点载荷在 X 和 Y方向均有明显大载荷冲击,而动臂与铲斗铰点载 荷只在Y方向出现大的冲击载荷,即卸料时的冲击 载荷不仅影响动臂左右板的受力状态,而且会通过 连杆对动臂横梁部位产生结构损伤。因此,在工作 装置结构设计和强度校核时,需考虑冲击载荷的影 响。工作装置所受侧载和铲斗内物料不均引起的偏 载远小于正载 *F_x*和 *F_y*,只考虑 *X*和 *Y*方向载荷的 合力,得工作装置外载荷时间历程如图 12 所示。

图 12 铲斗合成外载荷时间历程 Fig. 12 External synthetic load time history

采用雨流计数法统计 150 斗铁矿粉物料下 LW900K装载机铲斗外载荷识别结果的均幅值频 次数,并用正态分布拟合均值频次关系,用三参数威 布尔分布拟合幅值频次关系,如图 13 所示。

图 13 铲斗外载荷均幅值统计分布规律

Fig. 13 Statistical distribution of external load mean and amplitude

由图 13 可知,铁矿粉物料下工作装置外载荷均 值-频次和幅值-频次分别服从式(11)、式(12)所示 的对数正态分布和三参数威布尔分布

$$f(x) = \frac{1}{43.81\sqrt{2\pi}} \exp\left[-\left(\frac{x-149.6}{43.81\sqrt{2}}\right)^2\right]$$
(11)

$$f(y) = \frac{1.448}{118.8} \left(\frac{y-38.31}{118.8}\right)^{0.448} \exp\left(\frac{y-38.31}{118}\right)^{1.448}$$
(12)

4 结 论

約工作装置所受外载荷简化至铲斗斗尖处,
 建立了工作装置外载荷识别模型以及外载荷与铲斗

铰接点载荷之间的数学关系,明确了铲斗铰点载荷 是获取工作装置外载荷的基础。提出了三向力销轴 传感器和动臂截面弯矩获取动臂与铲斗铰接点载荷 的方法,通过不同姿态下的载荷验证试验,校核两种 载荷获取方法的结果精度,销轴传感器法测试相对 误差在 3.09%以内,截面弯矩法相对误差在 13.4% 以内。

2)基于载荷识别模型和销轴传感器载荷测试 结果,工作装置外载荷峰值出现在铲掘作业和卸料 作业段。通过试验测试得到了装载机卸料作业时的 惯性冲击载荷,对于LW900K试验样机在铁矿粉物 料工况下,卸料冲击载荷峰值约为400kN,且载荷 作用时间短。对150斗作业样本中斗尖载荷进行雨 流计数,得到载荷均值与载荷幅值分别服从正态分 布和三参数威布尔分布的结论。

 新建立的外载荷识别模型和提出的载荷测 试方法为装载机工作装置载荷谱编制及结构抗疲劳 设计提供了参考。

参考文献

[1] 戴文跃,梁昊. 装载机工作装置的动力学仿真与综合 优化[J]. 吉林大学学报:工学版,2004,34(4):602-605.

Dai Wenyue, Liang Hao. Dynamic simulation and comprehensive optimum design of working device of loader[J]. Journal of Jilin University: Engineering and Technology Edition, 2004, 34(4): 602-605. (in Chinese)

[2] 孟广良.轮式装载机工作装置强度计算中外载荷的确定[J].建筑机械,1999(12):64-66.
 Meng Guangliang. Determination of the load in the strength calculation of wheel loader working device

[J]. Construction Machinery, 1999(12): 64-66. (in Chinese)

- [3] 宁晓斌, 孟彬, 姚宏, 等. 装载机工作装置强度的动态仿真分析[J]. 工程机械, 2008, 39(5): 16-19.
 Ning Xiaobin, Meng Bin, Yao Hong, et al. Dynamic simulation research on strength of loader attachments
 [J]. Construction Machinery and Equipment, 2008, 39(5): 16-19. (in Chinese)
- [4] 万一品,贾洁,梁佳,等.装载机工作装置结构强度 分析与试验研究[J].机械强度,2016,38(4):772-776.

Wan Yipin, Jia Jie, Liang Jia, et al. Structural strength analysis and experimental research for working device of loader [J]. Journal of Mechanical Strength, 2016, 38(4):772-776. (in Chinese)

[5] 王云超,刘春,黄素德.基于偏载工况的装载机工作装置刚柔耦合分析[J].中国测试,2013,39(6):114-117.

Wang Yunchao, Liu Chun, Huang Sude. Rigid flexible coupling analyses of loader working device based on offset load[J]. China Measurement and Test, 2013, 39 (6): 114-117. (in Chinese)

- [6] Coetzee C J, Els D. The numerical modelling of excavator bucket filling using DEM[J]. Journal of Terramechanics, 2009, 46(5):217-227.
- [7] Stefaniak P K, Zimroz R, Obuchowski J, et al. An effectiveness indicator for a mining loader based on the pressure signal measured at a bucket's hydraulic cylinder[J]. Procedia Earth & Planetary Science, 2015, 15:797-805.
- [8] 赵云良. 装载机铲斗插入阻力研究[J]. 昆明工学院学报, 1991(6):43-47.
 Zhao Yunliang. Study on the breakout force on the bucket of loader[J]. Journal of Kunming Institute of Technology, 1991(6):43-47. (in Chinese)
- [9] 曾庆强,秦四成,赵腾云,等.装载机铲斗铲掘过程 受力分析[J].工程机械,2011,42(1):18-21.
 Zeng Qingqiang, Qin Sicheng, Zhao Tengyun, et al.
 Force analysis to digging procedure of loader bucket
 [J]. Construction Machinery and Equipment, 2011,42
 (1):18-21. (in Chinese)
- [10]李晓豁,石峥嵘,吕良玉,等.矿用挖掘式装载机铲 斗铲取散体煤岩随机载荷的模拟[J].工程设计学报, 2014,21(4):329-333.

Li Xiaohuo, Shi Zhengrong, Lv Liangyu, et al. Simulation of random loads for mining backhoe loader-bucket during scooping granular coal and rock[J]. Chinese Journal of Engineering Design, 2014,21(4):329-333. (in Chinese) [11] 刘彦鹏,刘克格,张书明,等.有起落架布置的双三角 翼载荷测试技术研究[J]. 振动、测试与诊断,2016,36 (5):1003-1008.

Liu Yanpeng, Liu Kege, Zhang Shuming, et al. Load testing technology of double delta wing mounting undercarriage[J]. Journal of Vibration, Measurement &. Diagnosis, 2016,36(5):1003-1008. (in Chinese)

- [12] 闫楚良,刘克格.飞机结构经济寿命可靠性设计与评价[J].振动、测试与诊断,2015,35(1):178-185.
 Yan Chuliang, Liu Kege. Reliability design and economic life assessment of aircraft structures[J]. Journal of Vibration, Measurement & Diagnosis, 2015,35(1):178-185. (in Chinese)
- [13] 张英爽,王国强,王继新,等.轮式装载机半轴载荷谱 编制及疲劳寿命预测[J].吉林大学学报:工学版, 2011,41(6):1646-1652. (in Chinese)
 Zhang Yingshuang, Wang Guoqiang, Wang Jixin, et al. Load spectrum compiling and fatigue life prediction of wheel loader axle shaft[J]. Journal of Jilin University: Engineering and Technology Edition, 2011,41 (6):1646-1652. (in Chinese)
- [14] 石来德, 卞永明, 简小刚. 机械参数测试与分析技术[M]. 上海: 上海科学技术出版社, 2009: 41-51.
- [15] 万一品,宋绪丁,郁录平,等.装载机工作装置销轴 载荷测试方法与试验研究[J].机械强度,2017,39 (1):26-32.

Wan Yipin, Song Xuding, Yu Luping, et al. Study on load test method and experiment of the pinshaft in loader working device [J]. Journal of Mechanical Strength, 2017,39(1):26-32. (in Chinese)

第一作者简介:万一品,男,1988年12 月生,讲师、博士。主要研究方向为结构 载荷测试与抗疲劳设计。曾发表《装载 机工作装置结构强度分析与试验研究》 (《机械强度》2016年第38卷第4期)等 论文。

E-mail: wyipin@chd.edu.cn