Journal of Vibration, Measurement & Diagnosis

DOI:10.16450/j. cnki. issn. 1004-6801. 2020. 06. 023

移动荷载下轨道-隧道-地基振动响应分析

黄 强1,3, 刘干斌1, 冯青松2, 黄宏伟3, 洪方岳4

(1. 宁波大学岩土工程研究所 宁波,315211) (2. 华东交通大学土木建筑学院 南昌,330013)(3. 同济大学地下建筑与工程系 上海,200092) (4. 宁波市轨道交通集团有限公司 宁波,315101)

摘要 地铁列车运行引起的环境振动日益引起人们的关注。通过引入位移势函数和傅里叶变换,推导了移动荷载 作用下轨道-隧道-地基纵向二维耦合模型的振动响应解答,并与一维地基梁模型的响应结果进行比较。研究表明, 将隧道考虑为 Timoshenko 梁时得到的隧道挠度及地层位移要比 Euler 梁时的大,但系统的临界速度会有所降低。 隧道埋深越大,隧道和地基变形越小;反之,下卧地层越厚,隧道和地基的振动位移越大。浮置板轨道可以有效减 少传递至隧道上的振动荷载幅值,但对隧道和地层位移的影响不大。一维轨道-隧道-地基模型可以用来确定隧道 内的振动荷载,但是两者的挠度计算结果只在列车速度及地基厚度不大时较为接近,否则差异较大。研究对于地 铁振动响应的理论分析具有一定的参考价值。

关键词 轨道-隧道-地基模型;铁木辛柯梁;浮置板轨道;隧道挠度;移动荷载 中图分类号 U25

引 言

地铁环境振动问题已引起了社会的广泛关注, 国内外学者采用不同方法对此开展了大量的研 究[1-4]。其中,理论解析方法基于严格的数学和力学 推导,可以直接得到模型的解析解,在研究中常被使 用。Metrikine 等^[1]将隧道视为埋置在地层内部的 无厚度欧拉梁,提出了隧道-地层纵向二维解析模 型,分析了不同荷载形式下均匀地基的响应规律。 Forrest 等^[3]提出了管中管(pipe in pipe,简称 PiP) 三维解析模型,基于圆柱壳理论得到了均匀弹性全 空间内隧道-地层响应解答。同时,也有部分学者采 用一维轨道-地基模型分析列车运行引起的轨道和 地基响应[5-6]。从已有的解析模型看,三维解析可以 详尽反映隧道-地层在横向和纵向上的动力响应,但 解析求解过程复杂,一般只适合深埋隧道的情况。 一维解析模型计算简单,效率高,但无法反映准确描 述地层的响应,同时地基模型的参数也不易确定,故 一般用作荷载计算模型或用来近似评估轨道结构的 振动特性。相比之下,二维纵平面模型既可以描述 列车的移动过程,又可以反映轨道-隧道-地基系统 的耦合响应特征,计算过程相对简单,适用于轨道结构刚度分析和隧道沉降快速评估,在实际中获得了较多的应用^[7-9]。然而,现有二维研究也存在一定不足:①隧道结构考虑为欧拉梁,没有考虑隧道剪切刚度对挠度变形的影响,地铁隧道由多块管片拼装而成,纵向接头的存在使得隧道结构存在明显的剪切变形,因此,将地铁隧道视为 Timoshenko 梁更为合理;②以往二维解析模型较少考虑隧道内轨道结构的存在,不能反映轨道结构对地铁振动响应的影响;③二维模型和一维模型的响应差异较少分析,因而可以通过对比两种模型的响应结果,对一维模型的适用性进行评估,对地基梁模型中地基弹簧刚度取值合理性进行检验。

针对上述研究不足,笔者基于轨道-隧道-地基 二维耦合模型,考虑隧道为 Timoshenko 梁,通过引 入位移势函数和傅里叶变换,首先得到频域下二维 模型的位移响应解答,再利用傅里叶数值逆变换,得 到了振动位移的时程响应解答。研究了剪切刚度对 地铁隧道挠度响应的影响,比较了浮置板轨道与整 体式轨道下的二维耦合模型响应差异,比较了一维 计算模型与二维耦合模型的响应差异。研究可为地 铁环境振动理论分析提供一定的参考。

^{*} 国家自然科学基金资助项目(52008214,51538009);宁波市自然科学基金资助项目(2019A610399);同济大学岩土及 地下工程教育部重点实验室开放基金资助项目(KLE-TJGE-B1904) 收稿日期;2019-08-13;修回日期;2019-11-12

1 轨道-隧道-地基二维耦合模型

建立轨道-隧道-地层纵向二维模型,如图 1 所示。考虑整体式轨道和浮置板轨道两种情况,如图 2 和图 3 所示。地铁隧道假设为有厚度的梁,顶部 深度为 h_1 ,底部深度为 h_2 ,直径为 D_t ,隧道下方地 层厚度 H 处假设为基岩面。地层水平和竖向位移 分别为 u(x,z,t),w(x,z,t),隧道 挠度 变形为 W(x,t),与 h_1 和 h_2 处的地层竖向位移一致。轨 道结构考虑为 Euler 梁,隧道为 Timoshenko 梁,地 层为黏弹性均匀地基,外部荷载为移动点荷载。

Fig. 1 2D longitudinal track-tunnel-ground model

图 3 浮置板轨道-隧道模型

Fig. 3 Floating slab track-tunnel model

均匀地基的振动方程[1]为

 $\begin{cases} \hat{G}\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2}\right) + (\hat{\lambda} + 2\hat{G}) \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right) = \rho_s \frac{\partial^2 u}{\partial t^2} \\ \hat{G}\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial z^2}\right) + (\hat{\lambda} + 2\hat{G}) \frac{\partial}{\partial z}\left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right) = \rho_s \frac{\partial^2 w}{\partial t^2} \end{cases}$ (1)

其中:
$$\hat{\lambda} = \lambda + \lambda^* \frac{\partial}{\partial t}$$
; $\hat{G} = G + G^* \frac{\partial}{\partial t}$; λ, G 为拉梅常数。

隧道为 Timoshenko 梁,这里米用修止的 Timoshenko 梁振动方程形式^[10]

$$EI_{eq} \frac{\partial^{4} W}{\partial x^{4}} + m_{t} \frac{\partial^{2} W}{\partial t^{2}} - \left(\rho_{t}I_{z} + \frac{EI_{eq}}{\kappa GA_{eq}}m_{t}\right) \frac{\partial^{4} W}{\partial x^{2} \partial t^{2}} - \frac{EI_{eq}}{\kappa GA_{eq}} \frac{\partial^{2}}{\partial x^{2}} \left(D_{t}\left[\sigma_{zz}\left(h_{1}\right) - \sigma_{zz}\left(h_{2}\right)\right]\right) + D_{t}\left[\sigma_{zz}\left(h_{1}\right) - \sigma_{zz}\left(h_{2}\right)\right] + D_{t}\left[\sigma_{zz}\left(h_{1}\right) - \sigma_{zz}\left(h_{2}\right)\right] = \left(1 - \frac{EI_{eq}}{\kappa GA_{eq}} \frac{\partial^{2}}{\partial x^{2}}\right) p_{0}\delta(x - v_{0}t)$$
(2)

当隧道内为整体式轨道结构时,钢轨-隧道的振 动方程为

$$\begin{cases} E_{1}I_{1} \frac{\partial^{4} y_{1}}{\partial x^{4}} + m_{1} \frac{\partial^{2} y_{1}}{\partial t^{2}} + k_{1} (y_{1} - W) + c_{1} (\dot{y}_{1} - \dot{W}) = \\ p_{0} \delta (x - v_{0} t) \\ EI_{eq} \frac{\partial^{4} W}{\partial x^{4}} + m_{t} \frac{\partial^{2} W}{\partial t^{2}} - \left(\rho_{t}I_{z} + \frac{EI_{eq} m_{t}}{\kappa GA_{eq}}\right) \frac{\partial^{4} W}{\partial x^{2} \partial t^{2}} + \\ \frac{EI_{eq}}{\kappa GA_{eq}} \frac{\partial^{2}}{\partial x^{2}} (k_{1} (y_{1} - W) + c_{1} (\dot{y}_{1} - \dot{W})) - \\ \frac{EI_{eq}}{\kappa GA_{eq}} \frac{\partial^{2}}{\partial x^{2}} D_{t} [\sigma_{zz} (h_{1}) - \sigma_{zz} (h_{2})] - k_{1} (y_{1} - W) + \\ c_{1} (\dot{y}_{1} - \dot{W}) + D_{t} [\sigma_{zz} (h_{1}) - \sigma_{zz} (h_{2})] = 0 \end{cases}$$

$$(3)$$

对于浮置板轨道,轨道-隧道的振动方程则变为

$$\begin{cases} E_{1}I_{1}\frac{\partial^{4}y_{1}}{\partial x^{4}} + m_{1}\frac{\partial^{2}y_{1}}{\partial t^{2}} + k_{1}(y_{1} - y_{2}) + c_{1}(\dot{y}_{1} - \dot{y}_{2}) = \\ p_{0}\delta(x - v_{0}t) \\ E_{2}I_{2}\frac{\partial^{4}y_{2}}{\partial x^{4}} + m_{2}\frac{\partial^{2}y_{2}}{\partial t^{2}} + k_{2}(y_{2} - W) + c_{2}(\dot{y}_{2} - \dot{W}) = \\ k_{1}(y_{1} - y_{2}) + c_{1}(\dot{y}_{1} - \dot{y}_{2}) \\ EI_{eq}\frac{\partial^{4}W}{\partial x^{4}} + m_{t}\frac{\partial^{2}W}{\partial t^{2}} - \left(\rho_{t}I_{z} + \frac{EI_{eq}}{\kappa GA_{eq}}m_{t}\right)\frac{\partial^{4}W}{\partial x^{2}\partial t^{2}} - \\ \frac{EI_{eq}}{\kappa GA_{eq}}\frac{\partial^{2}}{\partial x^{2}}D_{t}\left[\sigma_{zz}(h_{1}) - \sigma_{zz}(h_{2})\right] + \\ \frac{EI_{eq}}{\kappa GA_{eq}}\frac{\partial^{2}}{\partial x^{2}}(k_{2}(y_{2} - W) + c_{2}(\dot{y}_{2} - \dot{W})) - \\ k_{2}((y_{2} - W) + c_{2}(\dot{y}_{2} - \dot{W})) + \\ D_{t}\left[\sigma_{zz}(h_{1}) - \sigma_{zz}(h_{2})\right] = 0 \end{cases}$$

其中: $y_1(x,t)$, $y_2(x,t)$ 分别为钢轨、浮置板挠度; m_1,m_2,m_t 为钢轨、浮置板和隧道单位长度质量; E_1I_1,E_2I_2 分别为钢轨和浮置板的抗弯刚度; k_1,c_1 , k_2,c_2 分别为钢轨扣件和浮置板支承的刚度和阻尼; ρ_tI_z 为隧道转动惯性矩; $EI_{eq},\kappa GA_{eq}$ 分别为地铁隧 道等效抗弯刚度和等效抗剪切刚度; $\sigma_{zz}(h_1),\sigma_{zz}(h_2)$ 分别为隧道顶部和底部的竖向正应力。

地层中的应力规定以受拉为正,受压为负。引

入地层位移势函数和对二维耦合模型的振动方程进 行双重傅里叶变换,结合应力、位移边界条件,最终 得到波数-频率域下地层、轨道及隧道的位移表达式 如下。

1) 地层
1) 地层

$$\begin{cases}
\tilde{u}(k,z,\omega) = ik(A_{1+n}e^{zR_L} + A_{2+n}e^{-zR_L}) + \\
R_T(A_{3+n}e^{zR_T} + A_{4+n}e^{-zR_T}) \\
\tilde{w}(k,z,\omega) = R_L(A_{1+n}e^{zR_L} - A_{2+n}e^{-zR_L}) - \\
ik(A_{3+n}e^{zR_T} + A_{4+n}e^{-zR_T})
\end{cases}$$
(5)
2) 整体式轨道
 $\tilde{v}_L(k,z,\omega) = \frac{k_1 + ic_1\omega}{\omega}\tilde{W} + \frac{2\pi p_0\delta(\omega + kv_0)}{\omega}$

$$\widetilde{\widetilde{y}}_{1}(k,z,\omega) = \frac{k_{1} + ic_{1}\omega}{a_{1}} \widetilde{\widetilde{W}} + \frac{2\pi p_{0}\delta(\omega + kv_{0})}{a_{1}}$$
(6)

5) FERRITE

$$\begin{cases} \sum_{y_1}^{\infty} (k, z, \omega) = \frac{k_1 + ic_1 \omega}{a_1} \sum_{y_2}^{\infty} + \frac{2\pi p_0 \delta(w + kv_0)}{a_1} \\ \sum_{y_2}^{\infty} (k, z, \omega) = (k_1 + ic_1 \omega) \frac{2\pi p_0 \delta(w + kv_0)}{a_1 a_3} + \frac{k_2 + ic_2 \omega}{a_3} \widetilde{W} \end{cases}$$
(7)

其中

9) 巡盟托持送

$$\begin{cases} a_{3} = a_{2} - (k_{1} + ic_{1}\omega)^{2}/a_{1} \\ a_{2} = E_{2}I_{2}k^{4} - m_{2}\omega^{2} + (k_{1} + k_{2}) + i(c_{1} + c_{2})\omega \\ a_{1} = E_{1}I_{1}k^{4} - m_{1}\omega^{2} + k_{1} + ic_{1}\omega \end{cases}$$
(8)

对隧道上部地层, *n*=0;隧道下方地层, *n*=4。 在隧道边界上则满足如下条件

 $\widetilde{\widetilde{W}}(k,\omega) = \widetilde{\widetilde{w}}(k,h_1,\omega) = \widetilde{\widetilde{w}}(k,h_2,\omega)$ (9)

2 轨道-隧道-地基一维模型

在某些情况下,为了对轨道刚度或隧道振动沉 降作快速分析,或计算隧道内的振动荷载,通常建立 轨道-隧道-地基一维模型进行分析。如图 4 建立的 一维轨道-隧道-地基模型,根据弹性空间法^[11],得到

Pasternak 地 基 刚 度 换 算 公 式 $k_s = E_s/H,G = G_sH/3$,其中 H 为下卧地层厚度。地基阻尼 c_s 假 设与前面二维模型地层的黏性系数一致。此时一维 解析计算模型的振动方程为

$$\begin{cases} E_{1}I_{1}\frac{\partial^{4}y_{1}}{\partial x^{4}}+m_{1}\frac{\partial^{2}y_{1}}{\partial t^{2}}+k_{1}(y_{1}-W)+c_{1}\left(\frac{\partial y_{1}}{\partial t}-\frac{\partial W}{\partial t}\right)=\\ p_{0}\delta(x-v_{0}t)\\ EI_{eq}\frac{\partial^{4}W}{\partial x^{4}}+m_{t}\frac{\partial^{2}W}{\partial t^{2}}-\left(\rho_{t}I_{z}+\frac{EI_{eq}m_{t}}{\kappa GA_{eq}}\right)\frac{\partial^{4}W}{\partial x^{2}\partial t^{2}}-\\ \frac{EI_{eq}D_{t}}{\kappa GA_{eq}}\frac{\partial^{2}}{\partial x^{2}}\left(k_{s}W+c_{s}\frac{\partial W}{\partial t}\right)+D_{t}\left(k_{s}W+c_{s}\frac{\partial W}{\partial t}\right)-\\ G_{s}D_{t}\frac{\partial^{2}W}{\partial x^{2}}=k_{1}(y_{1}-W)+c_{1}\left(\frac{\partial y_{1}}{\partial t}-\frac{\partial W}{\partial t}\right) \end{cases}$$
(10)

3 计算结果分析

3.1 二维模型理论解析计算结果验证

以上海地铁隧道和软土地层为例,轨道-隧道-地基二维耦合模型的参数如表 1^[12]所示。隧道纵向 等效抗弯刚度为管片自身抗弯刚度的 1/7^[13],对于 等效抗剪切刚度,根据 Wu 等^[14]的研究成果,有 κGA_{eq}=ξκGA_{eq},地层弹性模量为 25 MPa,对应压缩 模量约为 2.5~5 MPa,为中、高压缩性地层。

表1 轨道-隧道-地基模型计算参数

Tab. 1 Parameters of track-tunnel-ground model

参数	数值	参数	数值
$\overline{E_1 I_1 / (\mathrm{N} \cdot \mathrm{m}^2)}$	6.145 \times 10 ⁶	$E_{\rm s}/{ m MPa}$	25
$m_1/(\mathrm{kg}\cdot\mathrm{m}^{-1})$	60.64	$G_{\rm s}/{ m MPa}$	9.62
$k_1/(\mathrm{N}\cdot\mathrm{m}^{-1})$	1×10^{8}	$\lambda^* / ((N \cdot s) \cdot m^{-2})$	$3 imes 10^4$
$c_1/(\mathrm{Ns} \cdot \mathrm{m}^{-1})$	3×10^4	$G^*/((N \cdot s) \cdot m^{-2})$	$3 imes 10^4$
$E_2 I_2 / (N \cdot m^2)$	6.615 $\times 10^{7}$	$k_{\rm s}/({ m N}\cdot{ m m}^{-2})$	3.33×10^{6}
$m_2/(\mathrm{kg}\cdot\mathrm{m}^{-1})$	1 640	$c_{\rm s}/(({\rm N} \cdot {\rm s}) \cdot {\rm m}^{-2})$	3.0 $\times 10^{6}$
$k_2/(\mathrm{N}\cdot\mathrm{m}^{-1})$	5.8 $\times 10^{6}$	$G/(N \cdot m^{-1})$	8.0×10 ⁷
$c_2/(\mathrm{Ns}\cdot\mathrm{m}^{-1})$	3.5×10 ⁴	h_1/m	12.0
$EI_{\rm eq}/({\rm N} \cdot {\rm m}^2)$	1.36×10^{11}	H/m	18.2
kGA_0/N	2.08 $\times 10^{9}$	$D_{\rm t}/{ m m}$	6.2
$m_{\rm t}/({ m kg} \cdot { m m}^{-1})$	16 080	p_0/kN	80
$ ho_{ m t} I_{ m t}/{ m kgm}$	69 038	$v_0 / (m \cdot s^{-1})$	20

基于表1计算参数,不考虑隧道内轨道的存在, 隧道抗剪刚度等效率为0.5,对比隧道-均匀地基二 维模型理论解析和有限元计算结果。利用 ABAQUS建立隧道-均匀地基二维平面应力有限元 模型,模型宽度为6.2 m,如图5所示。模型长为 120 m,隧道埋深为12 m,下部地基厚度为25 m,底 部边界水平、竖向位移约束,侧边水平位移约束,隧 道与地基绑定接触。内部作用80 kN移动荷载,速 度为 20 m/s,计算得到隧道中间位置的挠度时程对 比结果如图 6 所示。理论和有限元计算的隧道峰值 挠度分别为 0.42 和 0.48 mm,两者差别不大,两者 的挠度时程曲线也近乎一致,证明本研究的理论推 导结果是合理的。

图 5 隧道-地层二维有限元模型(单位:m) Fig. 5 2D tunnel-ground finite element model (unit:m)

图 6 隧道-地基二维模型计算结果对比

Fig. 6 Calculated results comparison for 2D tunnelground model

3.2 隧道为 Euler 梁和 Timoshenko 梁的对比

不考虑隧道内轨道结构存在,对比隧道等效为 Euler 梁和 Timoshenko 梁时的响应差异,由图 7 看 出,在地铁列车正常行驶速度下(v₀=20 m/s),隧道 的挠度时程曲线类似于静载作用,不过隧道为 Euler 梁时计算的挠度要小于 Timoshenko 梁情况, 隧 道抗剪切刚度越低,两者差距越大。Euler 梁近似 于 Timoshenko 梁中剪切刚度无限大的情况,可见, 忽略地铁隧道的剪切刚度会低估隧道与地层的振动 位移,地铁隧道考虑为 Timoshenko 梁更为合理。 比较两种隧道梁模型下地层位移的差异,如图 8 所 示,隧道为 Euler 梁时地层内部的位移也偏小,这是 因为隧道-地层绑定接触,隧道-地层作为一个耦合系 统,其位移取决于系统的整体刚度,Euler 梁-地基的 整体刚度大于 Timoshenko 梁-地基模型,故其系统变 形偏小。由此可以进一步预测,下卧地层地基刚度越 小,两种隧道梁模型下的隧道与地基振动位移差异会 越大,因此隧道梁模型应考虑隧道的剪切变形。

进一步比较两种隧道梁模型下隧道挠度与列车 速度的关系,如图9所示。可以发现,二维耦合模型

Fig. 7 Comparison of tunnel deflection ($v_0 = 20 \text{ m/s}$)

图 8 不同深度地层竖向位移(v₀=20 m/s)

Fig. 8 Vertical ground displacement under different soil depth ($v_0 = 20 \text{ m/s}$)

会存在一个临界速度。同样,隧道为 Timoshenko 梁时,耦合系统的临界速度要小于隧道为 Euler 梁 的情况。剪切刚度有效率为 0.5 时,临界速度分别 为 85 和 100 m/s,表明将隧道视为 Euler 梁时会高 估隧道-地层系统的临界速度。隧道-地层耦合系统 的刚度差距越大,临界速度差距就越大。笔者考虑 的地层偏于中、低强度,接近软土地层,可见在软土 地层当列车以高速通过时,极有可能超过临界速度 而引发共振现象。

3.3 整体式轨道和浮置板轨道结果对比

考虑隧道内的轨道结构,对比无轨道结构、整体

式轨道和浮置板轨道的情况,隧道为 Timoshenko 梁,剪切刚度有效率取 0.5,不同轨道形式下的隧道 挠度曲线如图 10 所示。浮置板轨道、整体式轨道和 无轨道时的隧道挠度影响的范围基本一致,峰值分 别为 0.38,0.41 和 0.42 mm,差别小于 10%。其原 因是隧道的挠度主要由下卧地层的刚度决定,内部 轨道的存在只在一定程上增加了系统的抗弯刚度, 但整体差别不大。然而轨道结构不同,轨道内部的 荷载差别较大,轨道类型对移动列车荷载的传递有 重要影响。从图 11 可知,浮置板轨道和整体式轨道 的钢轨扣件内力大小接近,但传递至隧道上的荷载 明显不同。浮置板轨道大大减少了作用在隧道上的 荷载峰值,但荷载影响范围变宽,最终作用到隧道上 的总荷载一致,故引起的隧道与地层位移幅值相近。

Fig. 10 Vertical ground displacement between different track patterns

Fig. 11 Inner force of track support between different track patterns

3.4 隧道埋深与下卧地层厚度的影响

在二维轨道-隧道-地基模型中,隧道上部覆土 厚度与下卧地层厚度也是影响隧道和地层位移的重 要因素。以整体式轨道为例,计算结果如图 12、 图 13所示。可以看出,隧道埋深越大,地层竖向位 移越小,上部地层对隧道沉降变形会起阻碍作用,即 增大隧道埋深有利于减少移动荷载引起的振动位 移。相反,隧道下卧地层厚度越大,隧道-地层的变 形增大,这是因为下部地基此时的压缩范围增大,从 而使得隧道的沉降变大,这也是地铁在深厚软土地 区运行时引起的地基沉降会更加显著的原因。

图 12 不同隧道埋深下地基竖向位移(H=25 m)

图 13 不同下卧地基厚度下地基竖向位移(h1=12 m)

Fig. 13 Vertical ground displacement under different underlying ground thickness($h_1 = 12 \text{ m}$)

3.5 二维耦合模型与一维地基梁模型对比

在一些研究中,一维轨道-隧道-地基模型被用 来分析轨道的振动位移或作为地铁振动荷载计算模 型使用^[15]。然而,对于一维计算模型的近似效果研 究较少。下面通过对比不同工况下一维与二维计算 模型的响应差异,说明一维计算模型的适用性。

1)列车速度的影响。不同速度下隧道挠度对 比如图 14 所示,两者的临界速度差别较大,二维耦 合模型的临界速度远小于一维地基梁模型,只有在 列车速度不大时,一维地基梁模型结果才与二维耦 合模型的结果接近。如地铁正常时速下(20 m/s), 两者的隧道挠度分别为 0.45 和 0.52 mm,较为接 近。因此,采用一维地基梁模型只在速度不大时可 以等效二维耦合模型计算隧道挠度。图 15 比较了 不同速度下两种模型隧道上的振动荷载,可以看出, 两者的内力差异不大,表明一维地基梁模型可以用 来确定作用在隧道上的振动荷载。

2) 地层厚度的影响。如图 16 所示,在地层厚

图 15 不同速度下隧道上的振动荷载

Fig. 15 Vibration load on the tunnel under different load speed

度较小时,两种计算模型的隧道挠度曲线近乎一致, 随着地层厚度增加,两者的差别逐渐变大,尽管挠度 峰值仍接近,但一维地基梁的挠度变化更加明显,表 明有深厚软土地层分布时,一维地基梁模型得到的计 算结果误差较大。图 17 表明,下卧地层厚度对隧道 振动荷载也有一定的影响,但两者总体差异不大,再 次表明一维地基梁模型可以用来预测作用在隧道上 的振动荷载。

3)地基弹性模量的影响。不同地基弹性模量 下两种计算模型结果如图 18 所示,不同地基刚度下 的隧道挠度基本一致,表明一维模型可以用来等效

图 17 不同地基厚度下隧道上的振动荷载对比(v₀=20 m/s)

Fig. 17 Vibration load on the tunnel under different ground thickness($v_0 = 20 \text{ m/s}$)

图 18 不同地基模量下隧道挠度对比(v₀=20 m/s) Fig. 18 Comparison of tunnel deflection under different ground elastic modulus(v₀=20 m/s)

二维耦合模型计算隧道挠度,在需要对轨道结构刚 度或隧道沉降作快速评估的场合比较适用。再比较 扣件内力,也发现两者结果十分接近,再次表明采用 一维地基梁模型可以用来计算隧道上的振动荷载。 以上对比也表明,在一定的条件下,采用弹性空间法 确定 Pasternak 地基模型的刚度参数是合理可 行的。

4 结 论

1)将地铁隧道考虑为 Euler 梁会低估隧道挠 度和地层振动位移,高估轨道-隧道-地基系统的临 界速度,隧道视为 Timoshenko 梁更为合理。

2)浮置板轨道可以有效降低传递至隧道结构 上的振动荷载峰值,但对隧道挠度及地层位移影响 不大,隧道挠度和地层位移主要与下卧地基的刚度 有关。轨道结构存在对系统整体刚度改变不大,隧 道挠度和地层位移主要与下卧地基的刚度有关。

3)隧道埋深增加可以减少隧道挠度和地基的 振动位移,下卧地层的厚度越大,隧道和地基的振动 位移就越大。深厚软土地区地铁列车运行引起的隧 道沉降变形会更加明显。

4)一维地基梁模型可以作为地铁振动荷载计 算模型来确定隧道上的振动荷载。在列车速度与下 卧地层厚度不大时,一维地基梁模型也可以等效二 维耦合模型计算轨道与隧道的挠度。二维耦合模型 的临界速度较一维地基梁模型要小得多,当列车速 度较大时,两者的位移响应差别较大。

5) 二维轨道-隧道-地基纵向耦合模型可以较好 地描述地铁列车运行引起的轨道、隧道、地基系统响 应特征,计算过程相对简单,适用于轨道结构的刚度 分析和隧道挠度变形的快速评估场合,具有良好的 参考价值。

参考文献

- [1] METRIKINE A V, VROUWENVELDER A C M. Surface ground vibration due to a moving train in a tunnel: two-dimensional model[J]. Journal of Sound and Vibration, 2000, 234(1): 43-66.
- [2] CLOUTEAU D, ARNST M, AL-HUSSAINI T M, et al. Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium[J]. Journal of Sound and Vibration, 2005, 283(1): 173-199.
- [3] FORREST J A, HUNT H E M. A three-dimensional model for calculation of train-induced ground vibration
 [J]. Journal of Sound and Vibration, 2006, 294(4): 678-705.
- [4] 黄强,姚湘静,黄宏伟,等.地铁运行时轨道-隧道-地 层振动实测与分析[J].振动、测试与诊断,2018, 38(2):260-265.

HUANG Qiang, YAO Xiangjing, HUANG Hongwei, et al. Field measurement and analysis of train-induced vibration in the whole track-tunnel-ground system[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(2): 260-265. (in Chinese)

- [5] KUO C M, HUANG C H, CHEN Y Y. Vibration characteristics of floating slab track [J]. Journal of Sound and Vibration, 2008, 317(3/4/5): 1017-1034.
- [6] 黄强,刘干斌,万灵,等.地铁列车运行时引起的隧 道内振动荷载研究[J].铁道科学与工程学报,2020, 17(5):1209-1218.

HUANG Qiang, LIU Ganbin, WAN Ling, et al. Analysis of metro vibration load excited on the tunnel induced by moving trains[J]. Journal of Railway Science and Engineering, 2020, 17(5); 1209-1218. (in Chinese)

- [7] KOZIOL P, MARES C, EAST I. Wavelet approach to vibratory analysis of surface due to a load moving in the layer[J]. International Journal of Solids and Structures, 2008, 45(7): 2140-2159.
- [8] ZHOU B, XIE X Y, YANG Y B. Simulation of wave propagation of floating slab track-tunnel-soil system by 2D theoretical model [J]. International Journal of Structural Stability and Dynamics, 2014, 14 (1): 1350051.
- [9] YUAN Z H, XU C J, CAI Y Q, et al. Dynamic response of a tunnel buried in a saturated poroelastic soil layer to a moving point load[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 348-359.
- [10] 陈镕, 万春风,薛松涛,等. Timoshenko梁运动方程的修正及其影响[J]. 同济大学学报(自然科学版),2005,33(6):711-715.
 CHEN Rong, WAN Chunfeng, XUE Songtao, et al. Modification of motion equation of Timoshenko beam and its effect[J]. Journal of Tongji University (Natural Science), 2005, 33(6): 711-715. (in Chinese)
- [11] HORVATH J S. New subgrade model applied to mat foundations[J]. Journal of Geotechnical Engineering, 1983, 109(12): 1567-1587.
- [12] 黄强. 地铁振动荷载作用下饱和软土隧道自由场响应 及沉降研究[D]. 上海:同济大学, 2018.
- [13] 徐凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大 学, 2005.
- [14] WU H N, SHEN S L, YANG J, et al. Soil-tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints[J]. Tunnelling and Underground Space Technology, 2018, 78: 168-177.
- [15] 王田友,丁洁民,楼梦麟.地铁运行引起场地振动的 荷载与分析方法[J].工程力学,2010,27(1):195-201.

WANG Tianyou, DING Jiemin, LOU Menglin. Load for subway-induced free field vibration and analysis method[J]. Engineering Mechanics, 2010, 27(1): 195-201. (in Chinese)

第一作者简介:黄强,男,1987年9月 生,博士、讲师。主要研究方向为轨道交 通环境振动与地基振动沉降。曾发表 《地铁运行时轨道-隧道-地层振动实测 与分析》(《振动、测试与诊断》2018年第 38卷第2期)等论文。

E-mail: qianghuang1987@163.com