DOI:10.16450/j.cnki.issn.1004-6801.2021.01.008

流线形流管无阀压电泵的仿真与实验^{*}

唐 茗, 包启波, 张建辉, 赖立怡, 黄 智, 杨冠宇, 潘殷豪 (广州大学机械与电气工程学院 广州, 510006)

摘要 基于现有无阀压电泵输送活体细胞或者长链功能性高分子时依然存在输送破坏与缠绕失性等缺点,提出了一种流线形流管无阀压电泵,研究了4组不同角度的流线形流管无阀压电泵的输出性能。首先,阐述了泵的结构及 工作原理,建立泵的流量表达式;其次,采用Fluent流体分析软件对β角度分别为10°,15°,20°和25°的流管组成的无 阀压电泵进行内部流场动网格仿真,发现内部流场稳定性随着β角的增加而降低,而最佳输出流量伴随着角度的增 加而增加,对比相同压差下流线形流管和锥形流管的仿真结果,发现流线形流管可有效提高流体流动的稳定性;最 后,对4组不同角度的样泵进行流量测量实验,并将实验结果与仿真结果进行对比。结果表明:实验得到的最佳输 出流量变化趋势以及泵送方向均与仿真结果一致。本研究促进了流线形流管无阀压电泵在微活性物输送领域以及 医疗保健领域的应用。

关键词 无阀压电泵;有限元仿真;流线形流管;流量 中图分类号 TH38;TN384

引 言

压电泵作为一种新型的压电驱动流体技术,具 有结构简单、易于微型化、无电磁干扰及功耗低等特 点,在生物医学、微生物输送以及医疗保健等领域有 广阔的应用前景^[1-3]。其中,无阀压电泵由于内部没 有可移动部件阀,避免了流动滞后且消除了可动阀 体对高分子、微生物等输送物的挤压伤害^[4-6],有利 于将其用作活体细胞、真菌和长链高分子药物的输 送,以促进现代生物医学领域的进一步发展。

国内外学者为此进行了大量的研究。张建辉 等^[7-8]为了输送高分子开发了一种Y型流管无阀压 电泵,分析了分叉角度对高分子输送的影响规律,确 立了不同角度的适用场合。文献[9-10]为了缩减医 疗药物输送用泵的体积,提出了一种泵腔内置阻流 体的半球缺阻流体无阀压电泵,研究了阻流体的排 列大小等因素对泵送性能的影响。王记波等^[11]分 析了现有的液体微混合器存在的不足,提出了一种 将阻流体内置在传统锥形流管内部的无阀压电泵微 混合器,研究了内部参数对混合效果的影响。文献 [12-13]通过对锥形流管无阀压电泵的研究,提出一 种用于医疗雾化的动锥角压电雾化器,并研究了影 响雾化效果的因素。文献[14]设计了一种可用于生 物输送的类十字流道无阀压电泵,利用仿真软件分 析了压电振子的振动模态以及泵中流体的流动特 性。由于无阀压电泵内部结构的特殊性,使其容易 出现旋涡回流现象。

笔者提出一种流线形流管无阀压电泵,以改善现有无阀压电泵在生物医疗领域的流动不稳定性。 首先,通过构建4组不同角度的流线形流管无阀压电 泵,建立泵送流量的理论表达式;其次,利用Fluent 软件模拟了流线形流管无阀压电泵内部流场特性和 相同压差下流线形流管与锥形流管内部速度变化情 况;最后,对泵送流量伴随角度特性变化的规律进行 实验验证,并将实验结果与仿真结果进行对比分析。

1 结构及工作原理

1.1 结构特点

图1为流线形流管无阀压电泵示意图,包含泵 盖、压电陶瓷和金属铜片组成压电振子、密封圈、设 有流管安装孔和泵腔的泵体以及一对互相倒置的流 线形流管。互相倒置的流线形流管安装在泵体的另 一侧,与泵腔连通构成流体介质的进出口。

图 2 为流线形流管结构示意图。根据结构形状,可以近似等效为2段锥形角分别为2α和2β的类

^{*} 国家自然科学基金资助项目(51375227);广州市属高校科研资助项目(1201610315) 收稿日期:2019-04-01;修回日期:2019-05-22

图1 流线形流管无阀压电泵示意图

Fig.2 Schematic diagram of the streamlined flow tube

锥形曲线对接而成的流管,使整个流管呈现既有收 敛又有发散状的流线形结构。为了方便解释说明, 定义流体从角度 2α段向角度 2β段流动为正向流 动,反之为反向流动。

1.2 工作原理

对压电振子施加正弦交变电压,泵腔内部的容 积产生周期性变化,泵腔容积逐渐增大对应无阀泵 的吸程阶段,容积减小为排程阶段。无论是吸程阶 段还是排程阶段,进入流管内部的流体均先处于逆 压力梯度流动状态:内部压力升高,流速降低,流动 呈现发散状态。当越过流线形流管的最大过流截面 后,其逆压力梯度流动状态瞬间转变为顺压力梯度流 动状态:内部压力减小,流速增加,流动呈现收敛状态。

2 理论分析与模拟

2.1 理论分析

当对压电振子施加正弦交变电压时,压电振子 开始做周期性往复运动。振子周边被固定,其振动 形式为一抛物弧面,在极坐标下其抛物面截面构成 的抛物线变化方程为

$$\omega(r) = \omega_0 (1 - r^2/R^2) \tag{1}$$

其中: *R* 为压电振子的工作半径;ω。为压电振子的 最大工作振幅。

压电振子振动变化引起的泵腔容积变化为

$$\Delta V = 2\pi \int_0^R \omega_0 \left(1 - \frac{r^2}{R^2} \right) r \mathrm{d}r = \pi \omega_0 R^2 / 2 \quad (2)$$

根据曲线渐扩管/渐缩管内部的流体流动的阻 力系数公式^[15-16],流体在流线形流管的2α和2β段扩 散和收敛流动时受到的阻力系数为

$$\begin{cases} \boldsymbol{\xi}_{k} = 3.2k \tan\left(\theta\right) \sqrt[4]{\tan\theta} \left(1 - \frac{1}{n}\right)^{2} \\ \boldsymbol{\xi}_{s} = \boldsymbol{\psi}\left(\delta_{p}^{3} + 2\pi\delta_{p}^{2} - 10\delta_{p}\right) \\ \boldsymbol{\psi} = -0.0125n^{4} + 0.0224n^{3} - 0.00732n^{2} + \\ 0.00444n - 0.00745 \end{cases}$$
(3)

其中: ξ_k , ξ_s 分别为扩散流动和收敛流动对应的流阻 系数; θ 为流线形流管的 α 或者 β 角;n为最大与最小 过流截面的比值; δ_b 为 α , β 的弧度值。

在 2 α , 2 β 段做扩散和收敛流动时所对应的流阻 系数分别为 ξ_{ak} , $\xi_{\beta k}$ 和 ξ_{as} , $\xi_{\beta s}$, 流线形流管的正、反向 流动时阻力系数分别为

$$\begin{cases} \boldsymbol{\xi}^{+} = (\boldsymbol{\xi}_{ak} + \boldsymbol{\xi}_{\beta s}) \\ \boldsymbol{\xi}^{-} = (\boldsymbol{\xi}_{\beta k} + \boldsymbol{\xi}_{as}) \end{cases}$$
(4)

在其他参数保持不变的条件下,流线形流管组 成无阀压电泵的流阻系数与β角呈正相关。根据文 献[17-18]得到泵腔容积变化量、流量及频率三者间 的关系,流线形流管无阀压电泵的流量表达式为

$$Q_{V} = \Delta V f \frac{\xi^{+} - \xi^{-}}{2 + \xi^{+} + \xi^{-}} = \frac{\pi \omega_{0} R^{2}}{2} f \frac{\xi^{+} - \xi^{-}}{2 + \xi^{+} + \xi^{-}}$$
(5)

其中:Qv为泵送流量;f为压电振子驱动频率。

2.2 模拟仿真

为了模拟流线形流管无阀压电泵内部的流场特性,固定α=4°,以β角为变量,建立β=10°,15°,20°和 25°的流线形流管组成的无阀压电泵的三维模型,并 对流体区域进行简化。在简化后的流体区域建立三 维状态下的有限元模型并划分网格,如图3所示。

图 3 流线形流管无阀压电泵网格划分

Fig.3 The meshing of the streamlined flow tube valveless piezoelectric pump

模拟采用的压电泵基本参数如表1所示。仿真 所用的流体介质是密度为1g/cm³的水,运动黏度系 数为1.01,温度为20℃,采用k-ε流体计算模型。根 据压电振子在驱动电压有效值为100 V时振幅变化 的最大值来设立动网格的运动参数。不同角度的流

表1 模拟用无阀压电泵尺寸参数

Tab.1	Dimensional	parameters	of	the	valveles
	piezoelectric	pump for sim	ulati	on	

参数	数值
泵腔直径/mm	35
泵腔高度/mm	1
流管β角/(°)	10,15,20,25
密封圈厚度/mm	0.2

线形流管参数如表2所示。

图 4 为吸程阶段速度云图。图 5 为吸程阶段速 度流线图。图 6 为排程阶段速度云图。图 7 为排程 阶段速度流线图。如图 4,5 所示,流线形流管无阀

表2 流管参数

Tab.2 Parameters of flow tubes

$eta/(^\circ)$	$\alpha/(^{\circ})$	D/mm	$L_{\rm a}/{ m mm}$	$L_{\rm b}/{ m mm}$
10	4	2.5	30.00	14.00
15	4	2.5	32.57	11.43
20	4	2.5	34.40	9.60
25	4	2.5	35.40	8.60

压电泵处于吸程时,右边流管内部流体的流动速度 大于左边流管内部的,且右边流管内部湍流和旋涡 也小于左边流管,因而流体在右边流管内受到的阻 力低。反之,如图6,7所示,在排程阶段流体在左边 流管受到的阻力较右边流管内的低。由于流线形流

管正反向流动时存在流阻不等的特性,因此可以推 断该流线形流管无阀压电泵从右流管向左流管输送 流体。根据图5,7所示的吸排程阶段的速度流线图 可知,当 β =10°和15°时,整个泵在送过程中,流管正 向流动时均没有出现明显的旋涡现象,仅在反正流 动时有少量的旋涡出现且分布规律;在 β =20°和25° 时,在流管的正向流动中出现了少量的旋涡且集中 分布,反向的旋涡明显加大,数量增加不明显。表3 为 β 角与流场稳定性的关系。同时,流线形流管无 阀压电泵在泵送流体时,左右两边流管内部流体的 流速之差与角度变化呈正相关关系,即流线形流管 无阀压电泵输出流量随着角度的增加而加大。

表 3 β 角与流场稳定性的关系 Tab.3 Relationship between β and flow field stability

β/(°)	稳定性
10	非常稳定
15	稳定
20	一般
25	较差

为了进一步探究流线形流管内部流场变化与传 统的锥形流管内部流场变化的差异,选取β=15°的 流线形流管和相同角度的锥形流管,利用Fluent模 拟了2只流管在进出口压力差为1kPa条件下流管 内部速度变化情况,如图8所示。模拟用锥形流管 尺寸参数如表4所示。

图 8 为相同压差下,流线形流管和锥形流管的速度云图。在锥形流管中,内部流体一直处于逆压力梯度流动状态,流体速度急剧减小并在流管的 3/4 处出

(a) 流线形流管速度云图
 (b) 锥形流管速度云图
 (a) Speed cloud of streamlined
 (b) Speed cloud of conical flow tube flow tube

图 8 流线形流管和锥形流管速度云图

Fig.8 Speed clouds of the streamlined flow tube and coneshaped flow tube

表4 锥形流管尺寸参数

Tab.4 The parameters of conical flow tube

参数	数值
流管长度/mm	44
锥形角/(°)	8
小径/mm	2.5
大径/mm	8

现速度完全为零的情况,有明显的旋涡出现并且以湍 流状态进入到泵腔内部,同时有大量的回流现象出现 扰乱了内部流动。在流线形流管内部,随着流体介质 进入到流管后,流体首先处于逆压力梯度流动,在增 压减速作用下流速逐渐减小,相对于锥形流管其速度 变化缓慢;直到流体越过最大过流截面后,内部流体 的压力梯度瞬间转变为顺压力梯度,此时速度又逐渐 增加。对比两者内部的流场变化,流线形流管能够改 善锥形流管结构带来的旋涡和湍流等问题。

3 流量实验

通过 3D 打印技术制作了 β 角分别为 10°, 15°, 20°和 25°的流线形流管,并与泵体、泵盖、压电振子 等组装成 4 个流线形流管无阀压电泵,如图 9 所示。

采用的压电振子参数如表5所示。利用示波器、函数信号发生器、功率放大器、电子天平和烧杯等实验器材设备,根据图10所示的实验原理搭建实验测试平台,如图11所示。首先,调节功率放大器的输出旋钮并结合示波器的监视功能使得输出电压保持有效值为100V;其次,通过信号发生器改变无阀泵的驱动频率;最后,通过电子天平称量流线形流

图 9 实验用流线形流管无阀压电泵示意图

Fig.9 Four groups of streamlined flow tube valveless piezoelectric pumps for experiment

表5 压电振子尺寸参数

Tab.5 The dimensional parameters of piezoelectric vibrator

参数	数值
压电振子外径/mm	41
压电振子内径/mm	35
压电陶瓷厚度/mm	0.23 ± 0.01
铜基厚度/mm	0.25 ± 0.01

Fig.10 Experimental principle of flow-rate measurement

图 11 实验测试平台 Fig.11 Experimental setup of flow-rate measurement

管无阀压电泵的泵送流量。

泵送流量与驱动频率之间的关系如图 12 所示。 对同一无阀泵保持驱动电压不变,观察到压电泵的 输出流量先随着驱动频率增加而增加,直到驱动频 率达某一值后,输出流量随频率的增加而减小。最 佳流量频率伴随β角度的增加呈现出逐渐增加趋 势。4组无阀泵最大泵送流量及其对应的驱动频率 分别为:7.98 mL/min,9 Hz(β =10°);14.76 mL/ min,12 Hz(β =15°);15.82 mL/min,15 Hz(β = 20°);16.45 mL/min,11 Hz(β =25°)。

将实验结果和仿真结果进行对比分析,发现实 验用的无阀泵泵送方向与根据仿真的速度云图分析 得到的泵送方向完全一致。对比上述4组不同角度 的压电泵实验获得的最佳输出流量与仿真模拟得到 的最佳输出流量,发现两者变化趋势吻合度高,仿真 流量与实验流量对比如图13所示。仿真时由于简

图 12 流量和驱动频率之间的关系

Fig.13 The experimental and simulated flow-rate results

化了模型,其流量较实际对应值大。

计算实验最佳流量和仿真流量两者之间的相对 误差,得到相对误差与角度的变化关系如图 14 所 示。最大误差为68.6%,对应角度 β =10°;最小误差 为49.7%,对应角度 β =15°。导致实验结果与仿真 结果误差出现的原因可以归为以下几点:①实验采 用橡胶软管连接流管的进出口导致较大压力损失; ②实验利用硅胶粘接振子和密封圈,导致泵腔的实 际容积加大,某种程度上减小了容积变化率;③泵腔 及流管内部存在气泡,影响了泵送性能。可见, β = 10°的无阀泵适用于流动稳定性高、输出流量要求不 高的场合; β =20°和25°的无阀泵适用于大流量输 出、但对流动稳定性无要求的场合。

Fig.14 Relationship between the relative errors and the angles

4 结束语

提出一种流线形流管无阀压电泵,用于提高输 送流体过程的稳定性。首先,推导了该泵的输出流 量表达式;其次,建立有限元仿真的三维模型,并模 拟安装角β分别为10°,15°,20°和25°的流线形流管 各自内部的流场,发现内部流场的稳定性随着β 的增加而降低,而最佳输出流量随着角度的增加而 增加;然后,对比相同压差下流线形流管和锥形流管 的仿真结果,发现流线形流管有效提高流体流动的 稳定性;最后,对压电泵进行流量测量实验,将实验 结果与仿真结果进行对比分析。结果表明:每组最 佳输出流量变化趋势以及泵送方向均与仿真结果一 致,仿真流量和实验流量之间最大误差为68.6%,最 小误差为49.7%。流线型流管无阀压电泵有利于提 高泵送的稳定性,为活体细胞输送、长链功能性高分 子的输送用泵提供了借鉴基础。

参考 文 献

[1] 陈松,王淑云,谢心怡,等.组合式压电驱动芯片水冷 系统[J].光学精密工程,2018,26(5):1140-1147. CHEN Song, WANG Shuyun, XIE Xinyi, et al. Practical research on computer chip water cooling system with combiner piezoelectric pump unit [J]. Optics and Precision Engineering, 2018, 26(5): 1140-1147. (in Chinese)

- [2] BAO Q B, ZHANG J H, TANG M, et al. A novel PZT pump with built-in compliant structures [J]. Sensors, 2019, 19(6): 1301.
- [3] 吴宣,陈立国,贺文元,等.面向压电泵脉动消除的流 体滤波器设计与实验[J]. 振动、测试与诊断, 2016, 36(6): 1123-1128. WU Xuan, CHEN Liguo, HE Wenyuan, et al. Investigation on milling stability lobe construction based on milling force simulation [J]. Journal of Vibration, Measurement & Diagnosis [J]. 2016, 36(6): 1123-1128. (in Chinese)
- [4] 吴越,杨志刚,刘勇,等.压电泵设计中阀的匹配方法 [J]. 振动、测试与诊断, 2013, 33(S2): 33-36. WU Yue, YANG Zhigang, LIU Yong, et al. Study on the performance optimization of check valve in piezoelectric pump[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(S2): 33-36. (in Chinese)
- [5] 田晓超,杨志刚,吴越,等.无阀气体压电泵仿真分析 与实验 [J]. 振动、测试与诊断, 2018, 38(4): 785-791. TIAN Xiaochao, YANG Zhigang, WU Yue, et al. Simulation analysis and experiment of valve-less gas piezoelectric pump [J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(4): 785-791. (in Chinese)
- [6] ZHANG J H, WANG Y, HUANG J. Advances in valveless piezoelectric pump with cone-shaped tubes [J]. Chinese Journal of Mechanical Engineering, 2017, 30(4): 766-81.
- [7] 张建辉,黎毅力,刘菊银,等."Y"形流管无阀压电泵 模拟与试验 [J]. 光学精密工程, 2008, 16(4): 669-675. ZHANG Jianhui, LI Yili, LIU Juyin, et al. Simulation and experiment of valveless piezoelectric pump with Yshape tubes[J]. Optics & Precision Engineering, 2008, 16(4): 669-675. (in Chinese)
- [8] 张建辉,黎毅力,刘菊银,等."Y"形流管无阀压电泵 流场分析 [J]. 北京工业大学学报, 2008, 34(2): 126-132. ZHANG Jianhui, LI Yili, LIU Juyin, et al. Analysis of the flow field of the valveless piezoelectric pump with Yshape tubes [J]. Journal of Beijing University of Technology, 2008, 34(2):126-132. (in Chinese)
- [9] 纪晶,张建辉,季瑞南,等.半球缺纵向排列对半球缺 阻流体无阀泵的影响[J]. 振动、测试与诊断, 2014, 34(6): 1072-1079.

JI Jing, ZHANG Jianhui, JI Ruinan, et al. Influence characteristics of hemisphere-segment in longitudinal alignment on valve-less piezoelectric pump with hemisphere-segment bluff-body [J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(6): 1072-1079. (in Chinese)

61

- [10] 曹炳鑫,张建辉,陈道根,等.半球缺阻流体无阀压电 泵流场分析 [J]. 压电与声光, 2014, 36(4): 515-518. CAO Bingxin, ZHANG Jianhui, CHEN Daogen, et al. Analysis of flow field of the valve-less piezoelectric pump with hemisphere-segment bluff-body [J]. Piezoelectrics & Acoustooptics, 2014, 36(4): 515-518. (in Chinese)
- [11] 王记波, 刘国君, 马祥, 等. 无阀压电泵驱动的集成式 微混合器 [J]. 西安交通大学学报, 2018, 52(1): 92-99 WANG Jibo, LIU Guojun, MA Xiang, et al. An inte-

grated micro-mixer driven by valveless piezoelectric pump[J]. Journal of Xian Jiaotong University, 2018, 52 (1): 92-99. (in Chinese)

- [12] 蔡玉飞. 振动微锥孔式雾化器原理及冷却应用研究 [D]. 南京:南京航空航天大学, 2016.
- [13] CAI Y F, ZHANG J H, ZHU C L, et al. Theoretical calculations and experimental verification for the pumping effect caused by the dynamic micro-tapered angle [J]. Chinese Journal of Mechanical Engineering, 2016, 29(3): 615-23.
- [14] FATHIMA M, GEHAN M, CHAMITHA A, et al. Development of PZT actuated valveless micropump[J]. Sensors, 2018, 18(5):1302.
- [15] 莫斯特柯夫 M A.水力学手册 [M]. 麦乔威,译.北京: 水利出版社,1956:299-319.
- [16] 依德利契克.实用流体阻力手册[M].华绍曾,杨学宁, 译.北京:国防工业出版社,1985:141-203.
- [17] 吴博达, 汤乐超, 李军, 等. 无阀压电泵的泵腔容积变 化量 [J]. 压电与声光, 2002(2): 152-154. WU Boda, TANG Lechao, LI Jun, et al. The pump chamber of a valve-less piezoelectric pump [J]. Piezoelectrics & Acoustooptics, 2002(2): 152-154. (in Chinese)
- [18] 张建辉, 王守印. 压电锥形流管无阀泵的研究——单 向流动原理及泵流量 [J]. 压电与声光, 2001, 23(1): 23-25. ZHANG Jianhui, WANG Shouyin. Study of piezoelec-

tric valveless diffuser/nozzle-based fluid pump: oneway flow principle and the pump flow [J]. Piezoelectrics & Acoustooptics, 2001, 23(1): 23-25. (in Chinese)

第一作者简介:唐茗,男,1994年2月生, 硕士生。主要研究方向为无阀压电泵的 结构设计及理论研究。

E-mail:gzdxtangming@foxmail.com