DOI:10.16450/j.cnki.issn.1004-6801.2021.01.025

立式一体化泵闸安全性研究及结构优化

侍贤瑞^{1,2,3},严根华^{1,3},董 家^{1,2,3},杨 字¹
(1.南京水利科学研究院 南京,210029)
(2.河海大学水利水电学院 南京,210098)
(3.水文水资源与水利工程国家重点实验室 南京,210029)

摘要 通过三维有限元数值模拟、水动力特性及流激振动试验,研究了立式表孔一体化泵闸结构在不同工作条件 下的静动力特性、水动力特性和流激振动特性,采用Hilbert-Huang变换对随机数据进行分析,分析了泵闸装置 抽水过程出现较大振动量的机理。在此基础上,对泵闸结构体型进行了抗振优化设计,加强了部件间的联结性和 整体刚度。研究结果表明,该优化方案有效控制了结构振动,抗振优化效果显著,为同类工程设计提供了参考 依据。

关键词 流激振动;数值模拟;抗振优化;立式一体化泵闸;时频分析 中图分类号 TV663⁺.1;TH312

1 问题的引出

我国河道水系泵闸工程一般均采用分离式布置,该布置方式存在占地面积大、建设成本高和泵闸 管理分散等缺点。随着城市化水平的提高,征地成 本及环境要求使得这一缺点日益凸显。一体化泵闸 具有工期短、占地小、运行费用低的优点,较好地解 决这一难题,尤其适合于中小河流的水环境和水生 态整治工程,具有广泛的应用前景及良好的经济和 社会效益。

一体化泵闸将轴流式潜水泵安装在平板闸门 上,泄水道与抽水道合二为一,既可按常规平板闸 门排涝、挡水使用,又可在城区洪水来流量较大、 无法自流泄洪时,启动水泵抽水强排。城市水景 观工程中,当外河水位<内河水位<城市设计景 观水位时,关闭闸门,启动水泵抽水以保证城市景 观水位。

一体化泵闸如图1所示。根据水泵的安装方 式,分为立式和卧式2种。立式一体化泵闸将水泵 置于一个S型流道的井筒之中,并将该井筒附加在 平板闸门梁格上,检修方便,对下游水深要求较低, 但流道复杂。卧式一体化泵闸将水泵置于圆筒中, 该圆筒平卧贯穿安装在平板闸门面板上。

目前,国内外学者对轴流泵及平板闸门各自的

流激振动特性研究较多。张德胜等^[1]对变转速下轴 流泵的压力脉动以及振动特性进行研究,发现模型 不同位置的振动以1倍频和2倍频为主,垂向振动 大于水平向。李忠等^[2]研究了变工况下的轴流泵振 动特性,发现振动量和流量的变化趋势和扬程与流 量的变化关系基本一致。马斌等^[3]对水工闸门振动 现状进行了综述。沈春颖等^[4]对平面闸门进行流 场-振动同步测量,发现同工况下,当闸后漩涡顺水 流方向靠近闸门,顺河向振动将达到峰值且为工况 均值的4~5倍。Chen等^[5]对用于改善河流水质的 生态闸门泵进行了研究和优化。

由于水泵振动-井筒内水流压力脉动-河道内水 流紊动的荷载组合极为复杂,其对泵闸结构的振动 危害程度仍未知,因此该研究对一体化泵闸的应用

^{*} 国家重点研发计划资助项目(Gz118004) 收稿日期:2020-05-06;修回日期:2020-06-15

有重要意义。笔者依托赛莱默(中国)有限公司的飞 力一体化泵闸项目,对一门双泵的立式表孔一体化 泵闸进行了研究,该装置宽为7.65 m,高为5.7 m(不 含井筒)。建立有限元数值模型分析了结构静动力 特性,并建立了比尺为1:10的水力学模型及水弹性 模型,三者互相结合以研究泵闸在不同条件运行时 的安全性。

2 静动力安全性数值分析

结构的静力特性分析包括应力和变形计算^[6]。 强度计算根据第4强度理论进行校核。结构动力 特性计算主要求解结构的固有频率和振型^[7],且泵 闸与水流的耦合作用仅发生在固液交界处,故属第 2类流固耦合问题。结构离散化后的动力平衡方 程为

$$M\ddot{\delta} + C\dot{\delta} + K\delta = F_p(t) \tag{1}$$

其中:M,C,K分别为结构的质量、阻尼和刚度矩阵; $\ddot{\delta}$, $\dot{\delta}$, δ 分别为结点的加速度、速度和位移; $F_{\rho}(t)$ 为 结构耦合面上结点处的动水压力。

引入 **Φ**(*x*,*y*,*z*,*t*)为水流扰动速度势,并与扰动 压强 *p* 建立联系,根据流体的连续性方程可得

$$\begin{cases} \ddot{\delta}_f = T\delta \\ p = SDT\ddot{\delta} \end{cases}$$
(2)

$$(\boldsymbol{M} + \boldsymbol{M}_G)\boldsymbol{K}\delta = \{0\} \tag{3}$$

其中:M_G为附加质量阵。

式(4)为在水介质下的结构自由振动的耦合控制方程,可表示为

$$K\boldsymbol{\Phi}_i = \lambda_i M_p \boldsymbol{\Phi}_i \tag{4}$$

因*M_p*为非对称矩阵,故可采用Lanczos法进行 求解。推导后得到

$$|\boldsymbol{K} - \boldsymbol{w}^2 (\boldsymbol{M} + \boldsymbol{M}_G)| = 0 \tag{5}$$

求解可得结构的n阶自振频率 $\omega_1, \omega_2, \cdots, \omega_n$ 。 将其代入式(5),得到相对应的n个振型。

立式一体化泵闸有限元模型由422个体单元构 成;单元划分尺寸为0.04 m;离散单元采用 solid187 单元,共离散710 291个单元,212 179个节点。边界 条件为:底缘及肘型流道垫脚y向位移为0,背向滑 块z向位移为0,导向轮x向位移为0。

2.1 静力计算

静力计算中,在闸门面板施加5.1 m静水压力。 计算结果表明:泵闸最大位移为0.46 mm,发生在肘 型流道进口处;主横梁最大挠度为1/18 500;结构最 大应力为104 MPa,发生在泵闸上部导向轮筋板处, 其余部分均低于50 MPa。数值计算结果如图2所 示,结构满足刚度和强度要求。

2.2 动力计算

数值计算结果表明:湿模态第1阶振动频率为 12.41 Hz,其振型为两水泵沿顺河向摆动。第2阶振 动频率为12.60 Hz,为两水泵沿横河向摆动。由计 算结果可知,水泵与井筒的联结性较弱,导致结构基 频较低。立式一体化泵闸的优势之一为水泵易于检 修,只需将井筒顶部的封盖打开,就可将水泵调出检 修,故不可在井筒上部增加侧向支撑。因此,需要进 行模型试验来评价结构的安全性。

3 模型试验

建立了几何比尺L,=10(即模型比例为1:10)的 水力学及水弹性模型各一套,分别研究泄水工况下结构所受水动力荷载、泄水抽水工况下结构的振动特性。采用江苏东华测试DH5922N动态采集仪,试验

3.1 试验模型及传感器布置

 1)水力学模型。为掌握泄水工况下泵闸结构 面板及肘型流道附近的动水压力分布,在闸门面板 及肘型流道共设置25个时均压力测点(M₁~M₂₅)和 8个脉动压力传感器(P₁~P₈)。

2) 水弹性模型。根据动力试验相似准则可得, 材料密度比尺 $\rho_r = 1$,弹模比尺 $E_r = L_r = 10$,泊松 比比尺 $\mu_r = 1$,水弹性模型的材料密度为7850 kg/ m³,弹性模量为2.1×10⁴ MPa,泊松比为0.3。模型 水泵比转速与原型泵相同^[8]。原型泵直径为 1400 mm,额定转速为495 r/min,额定扬程为 7.7 m,额定流量为4.3 m³/s,名义比转数为810,效 率为84.5 %。为了获取泵闸在运行过程中的振动 特性,在泵闸构重点部位布置了4个三向振动加速 度传感器($A_1 \sim A_4$),分别测量顺河向(x),横河向(y) 及垂向(z)的振动加速度。动水压力及振动加速度 测点布置如图4所示。

Fig.4 Dynamic pressure measuring points & acceleration measuring points

3.2 基于 HHT 的时频分析介绍

信号处理采用随机振动理论及 Hilbert-Huang 变换分析^[9]。首先,将原始信号经经验模态分解 (empirical mode decomposition,简称 EMD)成一系 列固有模式函数(intrinsic mode function,简称 IMF)和残差的组合;其次,对每个 IMF 利用解析信 号相位求导,计算出有意义的瞬时频率和瞬时幅 值,获得信号的 Hilbert 时频谱。该方法无需信号 的先验知识,分解过程完全由数据自身驱动,克服 了快速傅里叶变换(fast Fourier transform,简称 FFT)无法获得信号的时频信息、短时傅里叶变换 的时域、频域分辨率相矛盾以及小波变换对小波基 的敏感和信号能量泄露等问题,具有自适应性、完 备性、近似正交性和 IMF 分量的调制性,是一种后 验的方法。

3.3 水动力安全性评价

水动力试验的目的在于研究各工况下的水流流 态、不同测点的时均及脉动压力变化规律和量值,为 水弹性试验奠定基础。泄水试验工况组合如表1 所示。

Tab.1	water dis	charge test cond	litions
工况	开度/%	上游水位/m	下游水位/m
1	$10 \sim 40$	5.1	4
2	$10 \sim 30$	5.1	3.5
3	10~20	5.1	3.0
4	10	5.1	2.5

表 1 泄水试验工况组合 ab.1 Water discharge test conditions

3.3.1 时均动水压力特征

试验结果表明,泵闸面板及底缘压力随上下游 水位及泵闸开度的不同而呈一定变化规律,上游侧 测点时均动水压力水头接近上游侧水位,下游侧测 点时均动水压力随泵闸开度的不同而存在一定变 幅,测点越接近门体,变幅越大,随后逐渐降低直至 接近下游水深。水流过闸后,部分势能转换为动能, 流速增高而压力降低。闸门底缘处流态复杂,部分 工况存在负压,最大值为-0.71×9.8 kPa。 3.3.2 脉动水压力特征

水流脉动压力是泵闸泄水过程中引发流激振动的主要动荷载,包括由水跃、波浪对门体冲击引起的压力脉动,压力脉动强度及功率谱特征对泵闸振动量造成影响。试验结果指出,泵闸结构的总脉

动压力荷载随闸门开度的增加呈先增后减的趋势。随着上下游水位差的逐渐增大,结构的总脉动压力 峰值依次出现在开度为40%,30%,20%,10%(即 工况1-4,2-3,3-2,4-1);不同部位各测点的脉动压 力均方根值都没有超过3.1 kPa,功率谱分析得出 泵闸水流脉动压力功率谱密度的高能区主要集中 在0~10 Hz的低频区,主频在5 Hz范围内,脉动水 压力均方根值(root mean square,简称 RMS)特征 如图5所示。

Fig.5 RMS characteristics of Fluctuating Pressure

4 振动安全性评价

结构振动安全性评价通过水弹性模型试验进 行,试验分泄水与抽水两大工况。泄水试验的工况 选取脉动压力出现峰值的工况1-4,2-3,3-2和4-1。 抽水试验工况以电机频率正常工作状态(50 Hz)为 主要研究工况,同时还考查了60 Hz 超频模式和 30 Hz 低频节能模式下的泵闸运行状态。立式一体 化泵闸的井筒出水口悬于闸门之上,抽水时出射的 水流使上游形成回流冲击泵闸上部。为解决该问 题,在井筒出水口处各安装一拍门,用来消减出射水 流的能量。因此,设置无拍门的工况1-4对拍门减 振效果进行试验论证。抽水试验工况组合如表2 所示。

表 2 抽水试验工况组合 Tab.2 Pumping test conditions

工况	电机频 率/Hz	下游水 位/m	上游水 位/m	水位差/ m	拍门
1-1	50	3.00	5.0	2.0	有
1-2	50	2.50	4.0	1.5	有
1-3	50	2.00	3.0	1.0	有
1-4	50	2.50	4.0	1.5	无
2-1	60	3.00	5.0	2.0	有
2-2	60	2.85	4.0	1.15	有
2-3	60	1.70	3.0	1.3	有
3-1	30	1.70	3.6	1.9	有

4.1 泄水工况振动特性

试验结果表明,结构振动加速度整体上呈上部 大、下部小的态势。振动加速度均方根值在工况3-2 肘型流道收缩断面处垂向达到最大,为0.798 m/s²。 由时频图可知,频率集中在10 Hz以内,时间历程上 也较为均匀。测点4垂向加速度明显大于横河向及 顺河向,表明下泄水流形成的水跃对肘型流道有着 强烈的冲击作用。泄水工况振动加速度特征如图6 所示。

Fig.6 Acceleration characteristics of water discharge

4.2 抽水工况振动特性

抽水工况下泵闸结构荷载情况更为复杂,除了 承受静水压力、水流荷载的冲击作用外,还承载水泵 运转带来的振动载荷作用。试验结果表明:泵闸各 测点振动加速度均方根值随转速加快而增加,随上 游水位的降低而增加。水泵拍门的安装有助于减小 结构振动量。拍门的增加有效减小了井筒顶部的振 动量,顺河向、横河向及垂向的振动量分别减少 51.4 %,45.5 %及38.2 %,可见,出射水流有相当一 部分能量被消耗。门体侧边部位(A₃测点)顺河向 振动量略有增加是因为拍门使得出射水流沿横河向 分散,导致泵闸侧壁区域回流强度增加。整体上看, 泵闸结构振动量在工况3-1肘型流道处垂向达到最 大,为1.76 m/s²;在工况1-4 侧壁横河向达到最大,为 1.73 m/s^2

水泵电机频率分别为50,60及30Hz时,叶频 分别为24,29及14.5 Hz,频谱分析结果体现了这一 特征(FFT 频率分辨率取值导致些许偏差)。频率 集中在24 Hz左右,时间历程上也较为均匀。抽水 工况加速度特征如图7所示。

Fig.7 Acceleration characteristics of pumping condition

结构的抗振优化 5

由上述研究可知,泵闸结构的侧壁振动量较大, 需采取措施进行振动控制。从重量优化[10]、被动控 制减振、局部加强、减小井筒内水流冲击性和加强整 体刚度的角度出发,对结构进行了一系列抗振优 化。图8为泵闸结构抗振优化方案,包含:①在门 体、水泵井筒中心轴线处配置10t配重;②在闸门上 游增设反向支承和侧向支承橡胶阻尼减振垫;③在 井筒上部结构增加支撑横梁,以抑制顶部水平向振 动量;④在井筒出水口与闸门交界处增加筋板;⑤修 圆立式泵闸井筒90°流道拐角,顺畅水流流线;⑥增 加肘型流道斜拉杆刚度:⑦加强两个井筒出水口的 联结性。因原方案的1-3工况为泵闸电机常频运行 条件下出现最大振动量 $(A_{3x}, 1.70 \text{ m/s}^2)$ 的试验工 况,故取其为对比工况。此外,为全面掌握优化方案 结构的振动特性,优化试验增设一激光位移传感器 测量A₂测点的垂向振动位移。

试验结果表明,泵闸结构修改方案的振动量出 现明显下降,振动加速度最大均方根值出现在泵闸 井筒顶部顺水流向,为1.03 m/s²,降低了 39%。泵

图8 泵闸结构抗振优化方案

Fig.8 Vibration resistance optimazation scheme of pump gate

闸侧向振动量(A_{3v})降低了45%,频率集中在24 Hz 左右,时间历程上也较为均匀。优化措施取得明显 抗振效果,如图9所示。

结 论 6

1) 通过静力分析发现,导向轮的应力虽然处于 安全范围内,但较结构其余部分大得多。这是由于 泵闸挡水时面板整体呈拱形,导致导向轮结构挤压 应力相对较大,建议将导向轮改成弹性支撑,延长使 用寿命的同时,也起到一定的减振效果。

2) 对于水泵抽水运行中结构振动加速度过大 的问题,对结构体型进行了优化调整,将结构最大振 动加速度均方根值由 1.7 m/s^2 降至 1.03 m/s^2 ,抗振 优化效果明显。鉴于抽水工况水流运动和荷载作用 复杂,对泵闸结构焊接工艺提出更高要求,防止疲劳 破坏并综合考虑启闭方式。

3)水泵超频运行,振动量较大,不可长时间运行。上下游水位差较大且下游水位较低时,水泵低频运行的工作效率低。井筒内水量不足会导致结构振动量激增,应避免使用。

4) 泵闸一体化装置具有结构布置紧凑、占地面积小及工程投资节省等优点,建议在中小型泵闸工程上推广应用。

参考文献

 [1] 张德胜,耿琳琳,施卫东,等. 轴流泵水力模型压力脉 动和振动特性试验[J]. 农业机械学报, 2015, 46(6): 66-72.

ZHANG Desheng, GENG Linlin, SHI Weidong, et al. Experimental investigation on pressure fluctuation and vibration in axial-flow pump model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 66-72.(in Chinese)

 [2] 李忠,杨敏官,张宁,等.变工况下轴流泵装置振动特性实验研究[J].工程热物理学报,2013,34(5): 866-869.

LI Zhong, YANG Minguan, ZHANG Ning, et al. Experimental study on vibration characteristics of axial-flow pump under different operating conditions [J]. Journal of Engineering Thermophysics, 2013, 34(5): 866-869.(in Chinese)

- [3] 马斌,郭乙良.水工闸门振动研究现状及发展趋势[J]. 水利水运工程学报, 2019(2): 55-64.
 MA Bin, GUO Yiliang. Current research status and development trend of hydraulic gate vibration [J]. Hydro-Science and Engineering, 2019(2): 55-64. (in Chinese)
- [4] 沈春颖,何士华,杨婷婷,等.平面直升闸门流固耦合振动同步测试模型试验研究[J].振动与冲击,2016, 35(19):219-224.

SHEN Chunying, HE Shihua, YANG Tingting, et al. Model tests for synchronous measurement of fluid-structure interaction vibration of a plane vertical lift gate[J]. Journal of Vibration and Shock, 2016, 35(19): 219-224.(in Chinese)

- [5] CHEN H X, ZHENG Y, ZHOU D Q, et al. Design and development of an eco-gate pump installation based on computational fluid dynamics [J]. Journal of Mechanical Engineering Science, 2016, 23(14): 2636-2649.
- [6] 张维杰,严根华,陈发展,等. 深孔弧形闸门静动力特性及流激振动[J]. 水利水运工程学报, 2016(2):
 111-119.
 ZHANG Weijie, YAN Genhua, CHEN Fazhan, et al.

Static and dynamic characteristics of high pressure radial gate and its flow-induced vibration [J]. Hydro-Science and Engineering, 2016(2): 111-119.(in Chinese)

- [7] 古华,严根华.水工闸门流固耦合自振特性数值分析
 [J].振动、测试与诊断,2008,28(3):242-246.
 GU Hua, YAN Genhua. Numerical analysis of natural vibration properties of hvdraulic gate considering liquid-solid coupling [J]. Journal of Vibration, Measurement & Diagnosis, 2008, 28(3): 242-246. (in Chinese)
- [8] 房玉亭,李胜兵,黄祖光.对水泵水轮机模型试验要求的认识[J].水力发电,2006,32(3):48-50.
 FANG Yuting, LI Shengbing, HUANG Zuguang. The understanding of pump turbine model test conditions
 [J]. Water Power, 2006, 32(3):48-50. (in Chinese)
- [9] 林鹏,刘和云,胡东,等.基于Hilbert-Huang变换的轴流泵流动诱导振动试验[J].振动与冲击,2020,39
 (6):154-160.
 LIN Peng, LIU Heyun, HU Dong, et al. Experiment

on the flow induced vibration of an axial-flow pump based on Hilbert-Huang transform [J]. Journal of Vibration and Shock, 2020, 39(6): 154-160. (in Chinese)

- [10] 徐晓刚,徐冠雷,王孝通,等. 经验模式分解(EMD)及 其应用[J]. 电子学报, 2009, 37(3): 581-585.
 XU Xiaogang, XU Guanlei, WANG Xiaotong, et al. Empirical mode decomposition and its application [J]. Acta Electronica Sinica, 2009, 37(3): 581-585. (in Chinese)
- [11] 严根华,阎诗武,樊宝康.水工泄水结构振动的模态分析与有限元综合法[J].振动、测试与诊断,1994(1):
 1-7.

YAN Genhua, YAN Shiwu, FAN Baokang. A synthetic method of modal analysis and finite element for vibration of hydraulic outlet structure[J]. Journal of Vibration, Measurement & Diagnosis, 1994(1): 1-7.(in Chinese)

第一作者简介:侍贤瑞,男,1993年5月 生,博士生。主要研究方向为水工建筑 物流激振动。

E-mail:rainxr_shi@163.com

通信作者简介:严根华,男,1956年11月 生,教授级高工、博士生导师。主要研究 方向为水工结构流激振动及动态优化 设计。

E-mail:ghyan@nhri.cn