DOI:10.16450/j.cnki.issn.1004-6801.2021.03.024

板式直线压电振子的拓扑优化与实验^{*}

朱 华, 崔云鹏, 牛瑞坤

(南京航空航天大学机械结构力学及控制国家重点实验室 南京,210016)

摘要 为了提高直线超声电机的性能,采用拓扑优化方法设计了板式直线压电振子的拓扑结构。首先,在不改变电机几何外形尺寸的情况下进行原型机的拓扑优化分析;其次,对原型机和拓扑优化电机进行模态分析和谐波响应分析;最后,进行了原型机和拓扑优化后电机的机械性能测试。由实验结果可得:原型机最大输出力为1.5 N,采用拓扑优化设计的定子结构电机最大输出力为2 N,输出力比原型机提升33 %;在激励电压峰峰值为400 V时,原型机最大空载速度为410 mm/s,优化后的电机最大空载速度为460 mm/s,速度提升了12 %。结果表明,拓扑优化后超声电机的性能得到显著提高。

关键词 直线超声电机;结构设计;拓扑优化;电机性能 中图分类号 TH113.2; TM359.4

引 言

目前,对于超声电机的结构设计比较常见的方 式是采用尺寸优化确定电机定子的几何参数,使用 此种方法进行电机结构设计比较简便,但是在特定 的尺寸范围内,对于电机性能的提升具有局限性^[14]。

近年来,许多学者尝试了不同的方法来设计超 声波电动机的结构^[57]。Gilder等^[8]等对一种压电柔 性换能器进行了拓扑优化设计。万志坚^[9]通过在矩 形板上打4个槽用于减小谐振的频率差,仿真后发现 这种方式同样可以增加驱动足的振幅。唐茜^[10]通过 拓扑优化技术对杆状超声电机的定子结构进行设 计,通过放大驱动足的振幅提高电机的性能。 M'Boungui等^[11]以输出点位移响应最大为目标,利用 拓扑优化的方法设计了一款利用2个谐振频率比为 1:2的贴片式直线超声波电动机,其空载速度为 14 mm/s,最大推力为50 mN。张百亮等^[12]提出将V 型直线电机前端盖开圆弧形槽增加驱动足处振幅, 通过实验得出开槽后的电机性能有了一定的提升。

笔者提出通过对矩形板式的直线超声电机定子 结构进行拓扑优化设计,旨在不改变电机几何外形 尺寸的条件下提高板式直线超声电机的机械性能。 对优化前后的电机进行实验分析后发现,电机定子 结构的拓扑优化设计可以在一定程度上提高电机的 性能。

1 电机结构和拓扑优化方法

1.1 电机结构

电机整体结构如图1所示,由动子导轨、矩形板 电机和预压力调节器组成。超声波电机的定子结构 由矩形金属板和8片压电陶瓷组成,压电陶瓷片用 环氧树脂胶均匀地附着在金属板的正面和背面,其 中定子选取的金属基体为磷青铜(Qsn),压电陶瓷 片为PZT-8。这种类型的电机利用压电陶瓷的 d₃₁ 效应,主要用于具有线性输出的微型超声波电 动机。

图 1 直线电机整体箔构 Fig.1 The overall structure of the linear motor

1.2 电机工作原理

对于这种类型的超声电机,矩形板的平面内1 阶纵向伸缩振动和平面内2阶弯曲振动模式通常

^{*} 国家基础研究发展计划("九七三"计划)资助项目(2015CB057501);江苏省高校优势学科建设工程资助项目 收稿日期:2019-04-19;修回日期:2019-07-02

用于工作中,两种模式可以以相同的频率彼此耦合,从而使定子能在驱动足处形成椭圆运动。加电 方式为在对角线方向上分别施加正弦和余弦电压, 如图2所示。定子用于工作的两种振动模式如图3 所示。

1.3 拓扑优化方法

目前,变密度法(solid isotropic microstructures with penali-zation,简称SIMP)主要用于连续体的 拓扑优化^[13-15]。SIMP法是将设计区域的材料密度 设置为0~1,设计变量为材料的密度值大小,0表示 材料去除,1表示材料保留^[16]。为了更好地激发电 机的工作模态,拓扑优化过程中采用三平面对称的 约束条件,使3个对称面均通过矩形板的中心位置。 对矩形薄板粘贴压电陶瓷位置处施加与压电耦合效 应等效的简谐激振力,为之后进行拓扑优化分析进 行前处理工作。图4为力加载仿真示意图,其中矩 形板的绿色部分为施加正弦电压时等效激振力所激 励的区域,红色部分为施加余弦电压时等效激振力

Fig.4 Exciting force loading rectangular plate surface

2 定子结构设计

超声电机的工作性能好坏与定子结构的设计相关,笔者采用对电机定子部分进行拓扑优化设计,在 不改变电机几何形状的情况下,进一步提高电机的 输出性能。

2.1 结构优化设计

通过对现有的文献调查研究可知,驱动足振幅 与定子结构力系数相关,通常是在一定的范围内,驱 动脚振幅越大,电机的性能就越好[17]。在等效激振 力作用下,首先以增大定子驱动足的横向振幅为目 标,对定子进行拓扑优化分析,得到的结果如图5所 示。其中结构的红色与蓝色部分表示其单元密度值 由大到小分布,从图中可以看出,去除矩形板中间位 置两侧一部分的材料,会使驱动足处的振幅有一定 程度的增加。超声电机输出效果与施加的预压力有 关,预压力大小直接影响电机的运动特性。动子摩 擦层与驱动足之间的接触距离又会对两者之间的压 力产生影响[18],即预压力施加的大小与定子预压力 施加方向的振幅有关。在一定激励频率范围内,椭 圆运动的纵向振幅大小决定输出驱动力的大小,横 向振幅大小决定输出速度的大小。但过于增大纵向 振幅,会降低定子的纵向局部刚度,不利于超声电机 的工作,因此笔者在对定子进行设计时,尽量使纵向 振幅保持不变,而增大横向振幅,以此减小拓扑优化 后对定子纵向刚度的影响。图6为纵向刚度的拓扑 优化结果。为了更清楚地表示目标函数与设计变量 的关系,拓扑优化数学模型为

$$\max \operatorname{Dis}(x)$$
s.t.
$$\begin{cases} V_f(x) - V_{f^1} \leqslant 0 \\ 0 \leqslant x_i \leqslant 1 \end{cases}$$
(1)

$$\min V(y)$$
s.t.
$$\begin{cases} k(x) - k^{1} \leq 0 \\ 0 \leq x_{i} \leq 1 \end{cases}$$
(2)

$$\operatorname{s.t.} \begin{cases} V_f(x) - V_{f^3} \leqslant 0 \\ 0 \leqslant x_i \leqslant 1 \end{cases}$$
(3)

其中:函数 Dis(x)为定子结构的横向位移响应; V(y)为结构的总体积;k为结构的刚度要求; Δf 为定 子两种工作模态所对应频率的差值; V_f^1 , V_f^2 , V_f^3 为结 构的体积分数要求;设计变量 x_i 为单元密度值。

以上的分析均是对定子力学方面的拓扑优化分

析所得到的结果。另外,此类直线超声电机工作的 主要方式是利用2阶弯曲振动模式和1阶纵向振动 频率相互耦合,因此围绕优化电机工作模式的频率 一致性,以提高电机的输出性能。优化设计方案如 表1所示。定子结构频率优化结果如图7所示,迭代 曲线如图8所示。

图 5 定子横向振幅拓扑优化结果 Fig.5 Stator lateral amplitude topology optimization results

图 6 定子纵向刚度拓扑优化结果

Fig.6 Topological optimization results of stator longitudinal stiffness

图 7 频率拓扑优化结果 Fig.7 Frequency topology optimization results

从以上分析结果可以得出,去除定子4个顶角 部分和定子2阶弯振节点处的材料,能够减小1阶 纵振和2阶弯振的频率差。由图6纵向刚度优化结 果可知,去除2阶弯振节点处的材料,对电机纵向刚 度影响较小。施加等效激振力后,以增大定子顶部 横向振幅为目标进行拓扑优化设计,从结果可知,在 2阶弯振节点处去除材料会增加驱动足的横向振 幅。通过对上述拓扑优化结果的综合分析,设计出 拓扑优化后的定子结构。考虑到孔的数量会对结构 的局部刚度和强度有很大的影响,孔的数量不应过 多,而且定子设计成对称式结构能更有效地激发所 需模态。综合以上分析,定子的几何结构设计如 图9所示。

2.2 仿真分析

使用ANSYS有限元仿真软件对原型电机和拓 扑后的电机进行谐响应分析,这里将原型电机设为 I号机,拓扑优化后电机设为II号机。I号机和II

目标函数	设计变量	约束条件
定子顶部横向位移	设计区域单元密度	设计区域体积
设计区域体积	设计区域单元密度	定子纵向位移
两相振动模式频率差	设计区域单元密度	设计区域体积

号机谐响应分析曲线分别如图 10 所示。通过仿真 结果可以得出,拓扑优化后的电机频率一致性较优 化前的要好,驱动足处的振幅也有一定的提升,其中

Fig.10 Harmonic response analysis simulation curve

横向振幅提升较为明显。为了更直观地表达振幅的 变化,绘制了驱动足仿真椭圆轨迹如图11所示。从 椭圆轨迹可以看出,优化定子结构后的椭圆轨迹大 于优化前的横向振幅,满足上述的设计要求。

3 实验与分析

通过前面仿真分析,加工制作出 I 号电机和 II 号电机,电机实物如图 12 所示。其中线性导轨的一 侧粘贴摩擦片(刚玉陶瓷),调节预压力螺栓压缩弹 簧使其产生变形,进而对电机施加工作时所需的预 压力。采用在导轨一端吊砝码的方式,测试电机推 力大小。实验流程和设备如图 13 所示,实验装置如 图 14 所示。

图 12 电机实物 Fig.12 The actual motor

图 13 电机推力测试装置图 Fig.13 Motor thrust test device diagram

图 14 三维激光测振实验 Fig.14 3D laser vibration test

使用三维测振分析后得到 I 号机和 II 号机振动 速度频率响应特性曲线和定子测振振型如图 15所 示。通过对定子结构进行扫频实验,选择驱动足处 作为测试区,当对电机施加单相峰峰值为 100 V 的 激励电压时,从定子的频响特性曲线可知, I 号机的 1 阶 纵振和 2 阶 弯 振模态分别对应 53.752 和 54.537 kHz 的实际激励频率, II 号机的 1 阶纵振模 态和 2 阶弯振模态分别对应的实际激励频率为 55.106和 55.259 kHz。 I 号机和 II 号机仿真和实验 结果如表 2 所示。从实验结果可以看出,电机的实 际工作情况与有限元仿真分析结果大体相同, I 号 机与 II 号机相比频率一致性较差,但 I 号电机工作 时频率调节范围比优化后电机更大。

对 Ⅰ号机和 Ⅱ号机机械性能进行测试。空载 速度和频率的关系如图 16 所示,实验结果表明,

(b) Three-dimensional vibration measurement pattern
 图 15 三维测振实验结果

Fig.15 Three-dimensional vibration test results

Tab.2 Comparison of data results before and after stator topology optimization

电机	1阶纵 振/kHz	纵向振 幅/μm	2阶弯 振/kHz	横向振 幅/μm	频率 差/Hz
I号机仿真	51.284	7.0	51.527	6.0	243
Ⅱ号机仿真	52.290	8.5	52.330	11.0	40
I 号机实验	53.752	1.8	54.537	1.5	785
Ⅱ号机实验	55.106	2.5	55.259	4.0	153

I 号机和 Ⅱ 号机的最大空载速度分别为410和460 mm/s,对应激励频率分别为54.12和55.18 kHz。 从实验数据分析可以得知,通过对电机定子结构进 行拓扑优化设计后,可以一定程度上提高电机的空 载速度。图17 为两种电机分别在其各自最佳激励 频率、预压力分别为7和10 N时,激励电压幅值为 400 V时的速度与负载关系曲线。从图中可以得 知,随着负载的增加,动子的速度越来越小,拓扑型 电机的输出力提高了40%,推重比为38,而原型电 机的推重比为23。

Fig.17 Load and speed curve under different preloads

4 结 论

 1)笔者基于拓扑优化方法设计板式直线超声 电机的定子结构,在不改变电机几何外形尺寸的条 件下,提高了板式直线超声电机的性能。

2)通过有限元仿真分析得出,将电机的定子进行拓扑优化分析后,驱动足的振幅相对于原型机定子的驱动足有较大的提升。使用三维测振仪对电机的振动结果进行测试,然后对原型机和拓扑优化后的电机进行机械性能实验,证明了对超声电机定子进行拓扑优化设计后,电机的输出性能有明显的提升。

3)原型机和拓扑优化后的电机对应的最大空 载速度分别为410和460mm/s,最大输出力分别为 1.5和2N。相较于以往直线超声电机定子结构的 设计方法,使用拓扑优化技术对定子结构进行设计 后能够使电机获得更大的输出性能。

参考文献

- [1] 赵淳生.超声电机技术与应用[M].北京:科学出版社, 2010:14-19.
- [2] 李存岑.矩形板超声电机的振子振型激励技术研究 [D].上海:上海交通大学,2010.
- [3] 刘剑.基于矩形薄板面内振动的直线型超声电机的研究[J].声学学报,2003,28(1):86-90.
 LIU Jian. Research on linear ultrasonic motor based on in-plane vibration of rectangular thin plate [J]. Acta Acustica, 2003,28(1): 86-90. (in Chinese)
- [4] 许海.一种新型直线超声波电动机的设计[J]. 微特电机,2007(1): 21-22.
 XU Hai. Design of a novel linear ultrason-ic motor[J].
 Small & Special Electrical Machines, 2007(1): 21-22.
 (in Chinese)
- [5] 陈西府,黄卫清,王寅.动摩擦型压电叠堆直线电机定子的振动特性[J].振动、测试与诊断,2014,34(5):960-966.

CHEN Xifu, HUANG Weiqing, WANG Yin. Vibration characteristics of the ststor of dynamic friction type linear piezoelectric stack motors [J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(5): 960-966. (in Chinese)

- [6] OTSUKA J, FUKADA S, KAWASE Y. Ultraprecision position using lead screw drive [J]. Precision Engineering, 1993, 59(10):1655-1661.
- [7] 李海林,王寅,黄卫清,等.一种双足驱动压电直线电机
 [J].中国机械工程,2014,25(20):2719-2723.
 LI Hailin, WANG Yin, HUANG Weiqing, et al. A double-foot driving linear piezoelectric motor[J]. China Mechanical Engineering, 2014, 25(20):2719-2723. (in Chinese)
- [8] GILDER N, EMÍLIO C N S, Julio C A. Characterization of novel flexten-sional transducethod [J]. Journal of Intelligen Materlal Systems and Structures, 2003, 14(4/5):297-308.

- [9] 万志坚.基于面内弯纵复合模态的直线超声电机的研 究[D].哈尔滨:哈尔滨工业大学,2014.
- [10] 唐茜.新型杆状超声电机优化设计研究[D].合肥:合肥工业大学,2013.
- [11] M'BOUNGUI G P W, LOVEDAY P W, LONG C S. Development of a novel ultrasonic motor resonatorusing topology optimization[J]. International Journal of Mechanics and Materials in Design, 2011, 7:45-53.
- [12] 张百亮,姚志远,简月,等.基于弯曲模态的板形直线超声电机结构设计[J].振动与冲击,2019,38(1): 110-117.
 ZHANG Bailiang, YAO Zhiyuan, JIAN Yue, et al.

Structural design of plate-shaped linear uoltrasonic motor based on bending mode[J].Journal of Vibration and Shock, 2019,38(1):110-117.(in Chinese)

- [13] 张颖颖.带规则几何约束的结构频率拓扑优化方法研 究[D].大连:大连理工大学,2008.
- [14] 胡政.简谐力激励下的结构动力优化设计[D].南昌: 南昌航空大学,2015.
- [15] 韩婷. 基于 ANSYS 的车架拓扑优化设计[D]. 武汉: 武汉理工大学,2013.
- [16] 吴一帆.结构拓扑优化变密度法的灰度单元等效转换 方法[J].计算机辅助设计与图形学学报,2017,29(4): 760-767.

WU Yifan. Gray-scale equivalent conversion method of structural topology optimization variable density method [J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(4):760-767.(in Chinese)

- [17] 董迎辉.基于有效椭圆运动及结构力系数行波型超声 电机的研究[D].合肥:合肥工业大学,2014.
- [18] 李慧鹏,孙业飞,唐若祥,等.直线超声电机动子运动特 性研究[J]. 压电与声光,2018,40(3):344-348.
 LI Huipeng, SUN Yefei, TANG Ruoxiang, et al.Study on the motion characteristics of linear ultrasonic motors
 [J].Piezoelectrics and Acoustooptics,2018,40(3):344-348.(in Chinese)

第一作者简介:朱华,男,1978年8月生, 工学博士、副研究员。主要研究方向为 精密驱动技术及其在智能制造中的集成 应用。

E-mail:36582895@qq.com