DOI:10.16450/j.cnki.issn.1004-6801.2022.01.020

尖劈对大气边界层试验风场的影响^{*}

李 波^{1,2}, 李 晨¹, 郭焕良¹, 吴 迪¹
 (1.北京交通大学土木建筑工程学院 北京,100044)
 (2.北京交通大学结构风工程与城市风环境北京市重点实验室 北京,100044)

摘要 尖劈是风洞生成边界层风场的主要装置,对下游风场的剖面特征有明显的控制作用,但由于作用机制不明确,在风场调试中大多是依据经验布置尖劈,调试效率低。笔者通过风洞试验,得到了3种常用形状(梯形、三角形及曲边三角形)尖劈下游的风速剖面和湍流度剖面特征,并测试了尖劈数量、高度的影响。结果表明:尖劈形状与生成边界层风场的范围高度、指数率直接相关,尖劈的平均宽度越宽,影响高度越高,指数率越大;增加尖劈数量可提高下游风场的指数率,但对风场范围影响很小;抬高尖劈的高度可增加下游边界层风场的高度,配合使用挡板及粗糙元,可以快速调试出目标风剖面。

关键词 尖劈;边界层风场;风洞试验;平均风速剖面;湍流度剖面 中图分类号 TH113; TU312.1

引 言

风灾是破坏最为严重的自然灾害,每年都会导 致大量财产损失和人员伤亡^[1]。另一方面,随着材 料和建造技术的不断改进,工程结构日趋多样化、大 型化、复杂化,对风的敏感程度越来越强烈,风荷载 已经成为超高层建筑,高耸结构,大跨度屋盖结构的 主要控制性荷载^[2]。风洞试验是确定风敏感结构风 荷载及其风致效应的最主要手段,被广泛应用于科 学研究和工程实践^[3],而在风洞中准确模拟大气边 界层风场特征是该类试验最重要的要求之一^[4]。

大气边界层是大尺度漩涡和地面摩擦共同作用 的结果^[5],其中,大尺度漩涡是形成平均风速、湍流剖 面的主要因素,地面摩擦则主要影响近地面湍流。按 此机理,需要在风洞来流入口处设置尖劈(也称尖塔) 作为漩涡发生器,在尖劈下游设置一定数量粗糙元模 拟地面摩擦作用,用以模拟大气边界层风场^[6]。在实 际风场调试中也是先调整尖劈,在洞体中上部形成满 足《建筑结构荷载规范》(GB50009—2012)规定的指 数率风剖面,再通过挡板及粗糙元调节洞体下部风 场^[7]。Counihan^[8-10]利用下宽上窄的尖劈和六面体粗 糙元在风洞中成功模拟大气边界层风场。王兆印^[11] 仅利用粗糙元在风洞中自然形成大气边界层流场,但 由于粗糙元高度较小,其影响范围局限在一定高度 内,在调试高度较高或者较大缩尺比风场时难以满足 要求,需要借助对风剖面影响更大的尖劈^[12]。庞加斌 等^[13]采用非三角形尖劈模拟大缩尺比下的流场特性, 并用于工程结构抗风试验。石碧青等^[14]研究发现,采 用曲边梯形尖塔在一定范围内能够保持较大湍流度。 可以看出,尖劈是影响下游风剖面的主要因素,但目 前风场调试还是依靠经验,调试效率低。笔者通过 试验研究了尖劈形状、数量及高度对下游风场的影 响规律,为提高风场调试效率提供参考。

1 试验概况

本次试验在北京交通大学风洞实验室BJ-1风 洞高速试验段完成。如图1所示,该风洞为双试验 段回流式闭口风洞,风洞洞体平面大小为41.0 m× 18.8 m,其中,高速试验段尺寸为3.0 m×2.0 m× 15.0 m,低速试验段尺寸为5.2 m×2.5 m×14.0 m。 经第三方校核,风洞风场品质优秀。

测试时尖劈放置在高速试验段入口处,通过专用支架固定。采用CobraProbe风速探头采集高速试验段转盘中心处风速,采样频率为1.5kHz,尖劈处与风速探头处距离为9.65m。风速探头安装在专用移测架上,自动采集不同高度处风速,移测架定位精度为0.1mm。

如图2所示,测试选取目前边界层风场调试中

^{*} 国家自然科学基金资助项目(51878041);高等学校学科创新引智计划资助资助(B13002) 收稿日期:2020-02-04;修回日期:2020-06-04

图1 北京交通大学风洞实验室

Fig.1 Wind tunnel laboratory in Beijing Jiaotong university

常采用的梯形、三角形和曲边三角形共3种形状的 尖劈,3种尖劈的高度和底部宽度相同,分别为 570 mm和200 mm。梯形尖劈顶部宽度为100 mm, 三角形和曲边三角形的顶部宽度为20 mm,与支架 支撑板厚度相同。利用螺栓,将尖劈底板与风洞地 面预留钢带连接固定。

采用相对于参考点的无量纲高度系数 C_H和无 量纲风速系数 C_v来表示风场剖面,定义为

$$C_{\rm H} = H/H_{\rm r} \tag{1}$$

 $C_{\rm v} = V/V_{\rm r} \tag{2}$

其中:H,V为任一位置的高度和风速;H,为参考高度;V,为参考高度处风速,根据测试结果,本次试验 中参考高度为33 cm。

2 尖劈形状的影响

将每种尖劈选取4个,等间距布置在风洞来流入口处,即两侧靠风洞壁的尖劈距离风洞壁 375 mm,尖劈之间的距离为750 mm。绝对风速剖 面、相对风速剖面和湍流度剖面如图3~5所示。由 图3和图5可知,达到一定高度后,风速和湍流度 随着高度的变化明显减小,笔者将湍流度剖面不 再变化的高度称为调试风场的有效高度。利用梯 形、三角形、曲边三角形尖劈得到的调试风场有效 高度分别为80,75和70 cm,将该有效高度与尖劈

自身高度的比值定义为尖劈的影响高度系数,即

 C_{inf}

$$=H_{\rm inf}/H$$
 (3)

其中:*C*_{inf}为尖劈的影响高度系数;*H*_{inf}为调试风场的 有效高度;*H*为尖劈高度。

表1为不同形状尖劈的影响高度系数。由图4 可知,在尖劈的影响高度范围内风速剖面是曲线形 变化,在高于尖劈的影响高度范围之上风速恒定。 为了与《建筑结构荷载规范》(GB 50009—2012)中 规定的指数率风场相对应,对3种形状尖劈的风速

表1 不同形状尖劈的影响高度系数

Tab.1 Influence height coefficient of spiers with different shapes

	-		
参数	梯形	三角形	曲边三角形
$H_{ m inf}/ m cm$	80	75	70
$C_{ m inf}$	1.40	1.32	1.23

剖面进行指数函数拟合。考虑到靠近风洞底部风速 受风洞地面的影响和尖劈的影响高度之上风速恒定 这2个因素,拟合时舍去了距离风洞地面10 cm 及以 下和尖劈影响高度之上的数据。表2为不同形状尖 劈拟合的风剖面指数率。不同形状尖劈的风剖面如 图 6~8 所示。由图可知,在尖劈的影响高度范围 内,梯形尖劈测试得到的湍流度最大,曲边三角形测 试得到的湍流度最小,三角形的居中。在尖劈的自 身高度范围内,梯形尖劈相对于三角形和曲边三角 形尖劈具有更大的阻挡宽度,对来流具有更大的阻

Tab.2 The power index of wind profile with different shapes

挡作用,测得的湍流度更大。可见,尖劈形状与生成 边界层风场的范围高度、指数率直接相关,尖劈的平 均宽度越宽,影响高度越高,指数率越大。

3 尖劈数量的影响

笔者以三角形尖劈为例,测试了当尖劈个数分 别为4,5,6时下游风场剖面。测试中,尖劈均在风 洞中等间距布置。4个尖劈在风洞中的布置位置 为:两侧靠风洞壁的尖劈距离洞壁375 mm,尖劈之 间的距离为750 mm。5个尖劈在风洞中的布置位 置为:两侧靠风洞壁的尖劈距离洞壁300 mm,尖劈 之间的距离为600 mm。6个尖劈在风洞中的布置 位置为:两侧靠风洞壁的尖劈距离风洞壁250 mm, 尖劈之间的距离为500 mm。

测试得到绝对风速剖面、相对风速剖面和湍流度 剖面如图9~11所示。由图可知,增加尖劈的数量对

表 3 不同个数三角形尖劈模拟风场参数 Tab.3 The parameters of wind field by using dif-

ferent numbers of triangular spiers				
参数	4	5	6	
$C_{ m inf}$	1.32	1.49	1.58	
风剖面指数率	0.128	0.130	0.174	

4 尖劈高度的影响

笔者以三角形尖劈为例,通过抬高尖劈距离风洞 地面的距离来改变尖劈的高度,分别抬高10 cm 和 20 cm,测试数量分别为5,6的三角形尖劈。三角形尖 劈抬高20 cm的位置如图12所示。测试得到的风剖 面如图13所示。可以看出,抬高尖劈离风洞地面的距 离后,增加了尖劈对风速和湍流度的影响高度。由于尖 劈抬高,在尖劈的影响高度范围内,使得较高位置的绝 对风速减小,湍流度增大。从拟合得到的风速剖面来 看,尖劈抬高使风剖面指数更大。5个三角形和6个三角 形尖劈的影响高度系数和风剖面指数率如表4,5所示。

可见,在风场调试中,在底部一定高度范围内, 可以通过挡板、粗糙元来增加湍流度,通过抬高尖劈 可快速调试得到目标风场。

表4 5个三角形尖劈的影响高度系数和风剖面指数率 Tab.4 Influence height coefficient and power index of five triangular spiers

参数	不抬高	抬高 10 cm	抬高 20 cm
$C_{ m inf}$	1.49	1.58	1.75
风剖面指数率	0.130	0.144	0.116

表5 6个三角形尖劈的影响高度系数和风剖面指数率 Tab.5 Influence height coefficient and power index of six triangular spiers

参数	不抬高	抬高 10 cm	抬高 20 cm		
$C_{\rm inf}$	1.58	1.67	1.75		
风剖面指数率	0.174	0.177	0.128		

5 结束语

尖劈形状与生成边界层风场的范围高度、指数 率直接相关,尖劈的平均宽度越宽,影响高度越高, 指数率越大。增加尖劈数量可提高下游风场的指数 率,但对风场范围影响很小。抬高尖劈的高度可增 加下游边界层风场的高度,配合使用挡板和粗糙元 可以快速调试出目标风剖面。

参考文献

- HOLMES J D. Wind loading of structures [M]. New York:Spon Press, 2001: 16-18.
- [2] 贾彬,王汝恒.风洞实验在我国建筑工程中的应用简介[J].四川建筑科学研究,2006,32(3):39-41.
 JIA Bin, WANG Ruheng. Brief introduction of wind tunnel experiment in China's construction engineering
 [J]. Sichuan Building Science, 2006, 32(3): 39-41.
 (in Chinese)
- [3] SIMU E, SCANLAN R. Wind effects on structures: an introduction to wind engineering [M]. New York: Wiley-Interscience, 1978: 318-324.
- [4] NICHOLAS I. Wind tunnel studies of buildings and structures [M]. Reston, Virginia: American Society of Civil Engineers, 1996:67-70.
- [5] SHOJAEE S M N, UZOL O, KURO O. Atmospheric boundary layer simulation in a short wind tunnel [J]. International Journal of Environmental Science and Technology, 2014, 11(1): 59-68.
- [6] 贺林,王军.大气边界层湍流特性的风洞模拟实验研究[J].可再生能源,2018,36(6):911-916.
 HE Lin, WANG Jun. Wind tunnel experimental simulation of turbulent characteristics of atmospheric boundary layer[J]. Renewable Energy Resources, 2018, 36(6):

911-916. (in Chinese)

- [7] 周兴,李建兰.3.5 m×2.5 m风洞大气边界层被动模 拟实验研究[J].太阳能学报,2018,39(2):342-349.
 ZHOU Xing, LI Jianlan. Passive simulation experiment of atmospheric boundary layer in 3.5m×2.5m wind tunnel[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 342-349. (in Chinese)
- [8] COUNIHAN J. An improved method of simulating an atmospheric bundary layer in a wind tunnel [J]. Atmospheric Environment, 1969(3): 197-214.
- [9] COUNIHAN J. The structure and the wind tunnel simulation of rural and urban adiabatic boundary layers[D]. [S. l.]: University of Bristol, 1972.
- [10] COUNIHAN J. Adiabatic atmospheric boundary layer: a review and analysis of data from the period 1880-1972[J]. Atmospheric Environment, 1975(9):871-905.
- [11] 王兆印.大气边界层的风洞模拟[J].实验力学,1998, 13(3):283-293.
 WANG Zhaoyin. Wind tunnel simulation of atmospheric boundary layer[J]. Journal of Experimental Mechan-

ics, 1998, 13(3): 283-293. (in Chinese)

- [12] 徐洪涛, 廖海黎, 李明水.利用尖劈和粗糙元技术模拟大 气边界层的研究[J]. 公路交通科技,2009,26(9):76-80.
 XU Hongtao, LIAO Haili, LI Mingshui. Simulation of atmosphere boundary layer by using wedge and roughness element technique [J]. Journal of Highway and Transportation Research and Development, 2009, 26(9): 76-80. (in Chinese)
- [13] 庞加斌,林志兴.边界层风洞主动模拟装置的研制及 实验研究[J].实验流体力学,2008,22(3):80-85.
 PANG Jiabin, LIN Zhixing. Development and experimental study on the active simulation device in boundary layer wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 80-85. (in Chinese)
- [14] 石碧青,洪海波,谢壮宁,等.大气边界层风洞流场特性的模拟[J].空气动力学学报,2007,25(3):376-380.
 SHI Biqing, HONG Haibo, XIE Zhuangning, et al.
 Wind tunnel simulation of atmospheric boundary layer
 [J]. Acta Aerodynamica Sinica, 2007, 25(3): 376-380. (in Chinese)

第一作者简介:李波,男,1978年8月生,博 士、教授。主要研究方向为结构风工程。曾 发表《Full-scale wind speed spectra of 5 year time series in urban boundary layer observed on a 325 m meteorological tower》 (《Journal of Wind Engineering & Industrial Aerodynamics》2021, No.218)等论文。 E-mail:libo_77@163.com