DOI:10.16450/j.cnki.issn.1004-6801.2022.02.019

基于 Petri 网的测试-故障诊断一体化模型研究^{*}

翟禹尧, 史贤俊, 韩 露, 秦玉峰

(海军航空大学岸防兵学院 烟台,264001)

摘要 现有测试性模型对复杂装备进行分层建模时,不仅需要每层装备的故障模式、影响和危害性分析(failure mode, effects and criticality analysis,简称FMECA),还需要确定各故障模式之间的联系,增加了实际工作量和建模难度,与实际故障诊断脱节。为解决上述问题,提出一种基于Petri网的建模方法,将测试性模型与故障诊断模型相结合。首先,采用广义随机Petri网建立装备系统级的测试性模型,采用模糊Petri网(fuzzy Petri net,简称FPN)建立子系统的故障诊断模型,完成系统到子系统的传递;其次,根据FMECA信息对故障统计数据进行处理,通过神经网络对参数进行调整学习和优化;然后,采用正向推理实现故障的准确预测,逆向推理结合最小割集完成故障定位;最后,以涡扇发动机风扇部件模型为例进行建模分析,并通过故障树和统计数据验证了模型的正确性和有效性。

关键词 测试性;故障树;故障模式;Petri网;故障诊断模型;神经网络 中图分类号 TH165⁺.3;TP206⁺.3

引 言

多信号模型是最广泛应用的测试性模型,但其 缺点是系统之间的内在联系^[1]不能完整地表达出 来,具体表现为:仅用0和1描述系统故障与测试之 间的关系,忽略测试不可靠、延时性等有用信息,该 建模方法存在局限性。现有模型对复杂系统进行建 模会导致分析结果不全面^[2],具体表现为:系统故障 原因具有多样性、模糊性及偶然性,而故障与故障之 间存在复杂的逻辑关系,现有模型并不能对上述分 析进行有效描述,也不能动态描述故障的产生及诊 断过程,缺乏灵活性,最终导致模型不够完备,所建 模型与实际模型误差较大。

Petri 网是目前用来故障诊断的一种方法,既能 表现系统的状态,又能描述系统的行为^[3]。目前用 来故障诊断^[4]的 Petri 网可分为两类,故障 Petri 网^[5] 和随机 Petri 网^[6]。王瑶^[7]对四性工作开展了深入研 究,采用 Petri 网建立四性一体化模型,虽建立系统 测试性模型,但主要针对四性进行分析,测试性模型 研究不够深入。文献[8]提出采用广义随机 Petri 网 对系统进行测试性建模,,不仅将现有模型与 Petri 网模型的优缺点进行了对比,还对复杂系统进行了 分层建模。FPN属于故障Petri网的一种,不仅能够 描述系统的状态,还能够采用模糊推理描述故障征 兆和故障之间的对应关系。文献[9]采用加权模糊 Petri网(weighted fuzzy Petri net,简称WFPN)对电 网进行了故障诊断,取得了不错的效果。

在文献[8]工作的基础上,将FPN与系统级测 试性模型相结合,完成由系统到子系统的传递。只 需知道装备的FMECA信息,就可以建立模型进行 分析,该模型不仅考虑了系统结构特性,且能够处理 复杂的故障传播过程,具有严格的数学推理算法,可 以将故障的传播过程定量转化为数学方程。根据系 统测试性模型得到测试性指标,指导装备的机内测 试(build in test,简称BIT)设计,根据子系统的FPN 模型实现对故障的精确定位以及故障的预测。

1 FPN 描述

1.1 FPN 的定义

定义1 一个 FPN 由一个十一元组构成^[9-10],记 为 FPN=(*P*, *T*; *D*, *I*, *O*, *M*, *W*, *α*, *F*, *λ*, *U*),其中:

^{*} 国家自然科学基金青年科学基金资助项目(61903374) 收稿日期:2020-01-04;修回日期:2020-07-06

 $P = \{p_1, p_2, \dots, p_n\}$ 为有限库所集合;T = $\{T_1, T_2, \dots, T_m\}$ 为有限变迁集合;D = $\{D_1, D_2, \dots, D_n\}$ 为命题的有限集合,|P| = |D|, P ∩ T ∩ D = Ø; I: T → P[∞], 为输入矩阵, 反映变 迁到库所映射的矩阵; O: T → P[∞], 为输出矩阵, 反 映库所到变迁映射的矩阵; $M = (m_1, m_2, \dots, m_n)^T$ 表示库所标识分布向量; $W = (\omega_{ij})$ 为库所权值 $n \times m$ 矩阵; $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)^T$ 为库所置信度 n 维向 量; $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)^T$ 为变迁点火的阈值向量; $U = \text{diag}(\mu_1, \mu_2, \dots, \mu_n)$ 为变迁规则可信度矩阵; F 为一有向弧的集合, $F \subseteq (P \times T) \cup (T \times P), \times$ 为笛 卡尔积。

定义2 在模糊产生式规则中,如果其前提条件或结论中存在"and","or",称此规则为合成式规则。本研究涉及两种规则类型如下

if d_1 and d_2 and \cdots and d_n then $d(CF = \mu_i)$

if d_1 or d_2 or \cdots or d_n then $d(CF = \mu_i)$ 其中: d为结果命题。

1.2 FPN的参数学习

权值等参数源于专家的经验和装备的历史数据,存在着不准确和无法学习的问题,很难转化为具体的模糊值。采用 BP 神经网络进行参数学习,从 而优化故障诊断模型。

神经网络对FPN参数训练算法,以权值为例进 行论述。初始化误差阀值、迭代次数和学习率,步骤 如下。

1) 将学习样本进行归一化处理,以建立规范的 样本。

2) 建立如图1所示的神经网络模型,包括输入 节点I、隐藏节点M和输出节点O。其中:I与样本数 相同;O根据故障数来确定;M可以根据式(1)来 确定

$$M = \sqrt{I+O} + C \tag{1}$$

其中:C为1~10之间的一个随机常数。

 3)对步骤2的模型进行训练,得到权值等参数 的初始值。

4) 误差函数如式(2)所示

$$E = 1/2 \sum_{i=1}^{N} \sum_{j=1}^{L} \left[\alpha(p_j) - \hat{\alpha}(p_j) \right]^2$$
(2)

根据window-Hoff规则来修正权值,在第j次迭代中,调整权值的计算公式为

 $\boldsymbol{\omega}_{ii}^{(r)}(t+1) = \boldsymbol{\omega}_{ii}^{(r)}(t) - \eta \mathrm{d}E/\mathrm{d}\boldsymbol{\omega}_{ii}^{(r)} \tag{3}$

5) *j* = *j* + 1, 当*j*达到最大迭代次数,算法结束, 权值可以通过式(3)获得, FPN 经过神经网络学习 训练变成神经模糊 Petri 网(neural fuzzy Petri net, 简称 NFPN)。

2 NFPN诊断推理算法

在进行故障推理之前,需要定义如下数学 算子^[11]。

1) 比较算子 $\Box: C = A \Box B_{\circ} A, B$ 和 C 均为 $m \times n$ 矩阵,当 $a_{ij} > b_{ij}$ 时 $c_{ij} = 1$;当 $a_{ij} < b_{ij}$ 时 $c_{ij} = 0$ 。其中: $i = 1, 2, \dots, m; j = 1, 2, \dots, n_{\circ}$

2) 取小算子 $\odot: C = A \odot B_{\circ} A, B 和 C 均为$ $m \times n$ 矩阵, $c_{ii} = \min(a_{ii}, b_{ii})_{\circ}$

3)取大算子 $\oplus: C = A \oplus B_{\circ} A, B$ 和 C 均为 $m \times n$ 矩阵, $c_{ii} = \max(a_{ii}, b_{ii})_{\circ}$

4) 直乘算子 *: C = A*b。A 为 m×n矩阵,b为
 n维向量,c_{ii} = a_{ii}•b_i。

5) 乘法算子 $\otimes: C = A \otimes B$ 。A, B 和 C 分别为 $m \times q, q \times n, m \times n$ 矩阵, $c_{ij} = \max(a_{ik}b_{kj})$

2.1 正向推理算法

首先,根据FMECA获取故障征兆信息,确定库 所置信度;其次,根据点火判别函数进行判断变迁的 发生,根据关联矩阵(由输入矩阵和输出矩阵构成) 进行故障传播的推理,以实现对故障的预测与 防护^[12]。

2.1.1 库所置信度推理

推理公式为

$$\boldsymbol{\alpha}^{k+1} = \boldsymbol{\alpha}^{k} \oplus \left[(\boldsymbol{O} \boldsymbol{\cdot} \boldsymbol{U}) \otimes (\boldsymbol{W} \boldsymbol{\cdot} \boldsymbol{\alpha}^{k}) \right]$$
(4)

其中:O为输出矩阵;U为变迁规则置信度矩阵;W 为库所权值矩阵;α为库所置信度n维向量。

直到 $\alpha^{k+1} = \alpha^k$ 时,推理结束,否则继续由 α^k 推导得到 α^{k+1} 。

2.1.2 变迁点火判别函数

首先引入 Sigmoid 函数

$$Y(X) = \left[1 + e^{b[X-\lambda]}\right]^{-1} \tag{5}$$

其中:b为绝对值足够大的负常数,一般设定为b = -100。

因此,当 $X \ge \lambda$ 时,y(x) = 1,表示变迁点燃; $X \le \lambda$ 时,y(x) = 0,表示变迁不点燃。

将其与变迁阈值进行比较可得

$$C_{k} = \left\lceil G(X) \cdot Y(X) \right\rceil \Box \lambda \tag{6}$$

其中: $C_k = [c_1, c_2, \dots, c_n]^T$ 为变迁预使能矩阵; $c_j = 1$ 表示第j个变迁满足点火条件; $c_j = 0$ 表示 c_j 为潜在 的使能变迁,根据库所中托肯的有无判断该变迁是 否触发;G(X)为X的列向量, $G(X) = W \cdot \alpha_o$

根据NFPN的点火触发规则,得C_k的推理公式

$$\begin{cases} C_{k} = C_{k-1} \odot (I^{T} * M_{k-1}) & (k=1) \\ C_{k} = C_{k-1} \odot [I^{T} * (M_{k-1} - M_{k-2})] & (k=2, 3, \cdots) \end{cases}$$
(7)

2.1.3 故障传播推理

在 Petri中,故障的传播过程可通过库所中托肯 的变迁进行描述,正向推理算法将该过程定量转化 为数学模型,其公式为

$$M_{k} = M_{k-1} \oplus (K \otimes C_{k}) \tag{8}$$

其中:K为Petri网的关联矩阵^[13]。

2.2 反向推理算法

反向推理与正向推理故障传播路径正好相反, 反向推理直接从目标故障出发,推理出该故障的传 播路径,并在NFPN模型中找到导致这一故障的最 小割集。若其有多个最小割集,则根据最小割集发 生 率 进 行 依 次 排 查 。 若 最 小 割 集 G= {p₁,p₂,...,p_n},则最小割集故障发生率为

$$f(G) = \frac{\alpha_1 + \alpha_2 + \dots + \alpha_n}{n} \quad (n > 0)$$

反向推理过程中的输入矩阵、输出矩阵与正向 推理相反,它们的模型关系为:*I*⁻=*O*; *O*⁻=*I*。

根据反向推理模式得到反向推理矩阵算法[13]为

$$\begin{cases} C_k^{-} = \left[(I^{-} * M_{k-1}^{-}) \otimes I_m \right] \odot C_{k-1} \\ M_k^{-} = M_{k-1}^{-} \oplus \left(O^{-} \otimes C_k^{-} \right) \end{cases} \quad (k=1, 2, \cdots) \quad (9) \end{cases}$$

其中: C_k^- 为第k次反向点火时的逆网变迁序列; $l_m = (1, 1, \dots, 1)^T$ 为m维向量。

3 数据的获取与模型构建

3.1 数据的获取

1)库所置信度:本研究根据文献[14]的方法,
 结合2.1.1节的库所置信度推理公式以及历史统计数据设定初始库所置信度。

2) 变迁置信度:μ_i是可信度值,μ_i∈[0,1],主要 表示规则中前向库所引发后继库所的真实强度。根 据历史数据,并通过统计处理确定模型的初始置 信度。

3) 库所权值:采用神经网络算法进行训练调节。权值的每一步调节都与误差的反向传播量有关,反向传播量如式(2)所示。

3.2 模型的构建

图 2 为涡扇发动机本体功能框图,可以看出该 系统由 7 个部件组成,各个部件间紧密联系。表 1 为 风扇部件的 FMECA 信息。首先采用文献[8]的方 法建立该系统的测试性建模,如图 3 中第 1 层模型所 示。表 2 为测试性模型的库所和变迁的具体含义, 表 3 为 FPN 模型的库所和变迁的具体含义, 根据测 试性模型得到相关性矩阵如表 4 所示,求得故障检 测率 100%,故障隔离率为 72%。根据 FMECA 信 息建立 FPN 模型,如图 3 第 2 层模型所示。

4 涡扇发动机故障分析

根据测试性模型,在系统内部设置相应的测试

表1	风扇部件FMECA信息	

Tab.1 FMECA information of Fan component

故障模式	故障征兆	故障 严酷度
风扇效率低	 1) 叶尖径向间隙过大 2) 进气道出口流场畸变较大 3) 叶片型面加工误差 4) 叶片损伤 5) 共同工作线位不合适 	II
叶片裂纹、变 形或断裂	 1)外物损伤 2)叶片疲劳损伤 3)叶片产颤振 	II
喘振	 1)进气道出口气流畸变度偏高 2)叶片损伤,叶片流道内流场恶化 3)控制程序交叠 	II
风扇轴转扭 花键损伤 (过度磨损、 冲击损伤、 断裂)	 1)装备质量不好 2)承受过大载荷 3)疲劳损伤 	II
风扇轴裂纹 或折断	 1) 疲劳损伤 2) 承受过大载荷 	II

表 2 测试性模型的库所和变迁的具体含义 Tab.2 The specific meaning of the library and changes

库所	编码	含义	
p_{a1}	001-OG.1	风扇部件故障	
p_{a2}	002-OG.1	压气机部件故障	
p_{a3}	003-OG.1	燃烧室部件故障	
p_{a4}	004-OG.1	高压涡轮部件故障	
p_{a5}	005-OG.1	低压涡轮部件故障	
p_{a6}	006-YW.1	内涵尾喷管	
p_{a7}	007-YW.1	外涵尾喷管	

点,为故障诊断奠定基础。笔者以风扇部件为例,进 行故障分析。

4.1 初值的确定

根据2.1节中所述的方法,借助于专家经验对 模型中的各参数的初值进行确定。

初始库所置信度 α_0^{T} = (0.92, 0.69, 0.89, 0.9, 0.87, 0.75, 0.72, 0.86, 0.93, 0.77, 0.67, 0.63, 0, 0, 0, 0, 0, 0)

变迁置信度 U=diag(0.87, 0.82, 0.78, 0.72, 0.90, 0.88, 0.87, 0.91, 0.66, 0.88, 0.90, 0.87)。

表3 FPN模型的库所和变迁的具体含义

Tab.3The specific meaning of the library and changes

库所	编码	含义
₱ ₁₃	001-OG.1	风扇效率低
p_{14}	001-OG.2	叶片裂纹、变形或断裂
p_{15}	001-OG.3	喘振
p_{16}	001-OG.4	风扇轴传扭花键损伤
₱ ₁₇	001-OG.5	风扇轴裂纹或折断
p_1	001-OG.11	叶尖径向间隙过大
p_2	001-OG.12	进气道出口流场畸变较大
<i>₽</i> ₃	001-OG.13	叶片型面加工误差
p_4	001-OG.14	叶片损伤
p_5	001-OG.15	共同工作线位不合适
p_6	001-OG.21	外物损伤
p_7	001-OG.23	叶片产颤振
p_8	001-OG.31	进气道出口气流畸变度偏高
p_9	001-OG.33	控制程序交叠
p_{10}	001-OG.41	装备质量不好
₱ ₁₁	001-OG.42	承受过大荷载
p_{12}	001-OG.43	疲劳损伤

表 4 相关性矩阵 Tab.4 Correlation matrix

故隆	章测试	T_{1}	T_2	T_3	T_4
001	-OG.1	1	1	1	1
002	-OG.1	0	1	1	1
003	-OG.1	0	1	1	1
004	-OG.1	0	0	1	1
005	-OG.1	0	0	0	1
006	-YW.1	0	0	0	1
007	-YW.1	1	0	0	0

0.5, 0.5, 0.5, 0.5).

本研究以叶片裂纹、变形或断裂 p15、风扇轴裂

纹或折断 p_{17} 以及风扇部件故障 p_{a1} 为例,对权值进 行调节计算。理想权值设为 $\omega_{4,8} = 0.6, \omega_{9,8} = 0.4,$ $\omega_{11,10} = 0.5, \omega_{12,10} = 0.5, \omega_{15,12} = 0.6, \omega_{16,12} = 0.2,$ $\omega_{17,12} = 0.2$ 。最大学习步数b=3000,学习率 $\eta = 0.02, E$ 的允许误差为 5×10^{-5} 。

经过2861步调节,E达到允许误差范围,得到 $\omega_{4,8} = 0.64, \omega_{9,8} = 0.36, \omega_{11,10} = 0.48, \omega_{12,10} = 0.52, \omega_{15,12} = 0.54, \omega_{16,12} = 0.24, \omega_{17,12} = 0.22$ 。

根据图 3 中 NFPN 的拓扑结构,可以得到输入 矩阵 I、输出矩阵 O 和权值矩阵 W 分别为

将 $O, U, W 和 a^{\circ}$ 代入 2.1 节中的库所置信度推 理 公 式 (4), 经 过 Matlab 编 程 推 理 计 算,直 到 $a_3 = a_2$,推理结束,获得全部库所的置信度 $a_2^{T} =$ (0.92, 0.69, 0.89, 0.9, 0.87, 0.75, 0.72, 0.86, 0.93, 0.77, 0.67, 0.63, 0.80, 0.73, 0.83, 0.46, 0.59, 0.61),并将其作为正、反推理的置信度数据。

4.2 正向推理

4.3 反向推理

首先,根据测试性模型以及相关性矩阵,在涡扇 发动机内设置相应的BIT电路;其次,根据设置好 的测试点进行检测。本研究假设BIT检测出风扇 部件发生故障,并以此进行推理说明分析。

将 I^-, O^-, C_1^-, M_1^- 代入式(9),经过演绎推理, 直到 $C_3^- = C_2^-,$ 推理结束,得到可以引发风扇部件故 障的全部库所,如图 6 所示。标识向量 $M_2^-=(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1)^{\mathrm{T}}$ 。

根据图 5 中的事件关系,可求得引发风扇部件 故障的最小割集: $G_3 = \{p_8\}, G_4 = \{p_{10}, p_{11}, p_{12}\},$ $G_5 = \{p_{11}, p_{12}\}; f(G_3) = 0.86, f(G_4) = 0.69,$ $f(G_5) = 0.65$ 。通过最小割集发生率,可以得到故 障的诊断先后顺序为 G_3, G_4, G_5 。当一个故障由多 个故障征兆的库所引发时,例如 $G_5, 根据p_{11} \pi p_{12}$ 置 信度高低进行诊断。反向推理算法与传统故障检测 方法相比,在提高检测效率的同时,还避免了检测过 程中的盲目性和复杂性。

5 推理验证

5.1 正向推理验证

故障诊断领域常用的方法之一为故障树分析 (fault tree analysis,简称FTA),笔者通过建立系统 的故障树对正向推理进行验证。图6是以风扇部件 为例的故障树模型,事件含义如表2、表3所示,其中 $p_3 和 p_4$ 由或门连接之后与 p_1, p_2, p_5 通过与门相连 接。为了推理方便,将 $p_3 和 p_4$ 由或门连接之后的隐 藏事件用 X_1 表示, X_1 无具体含义,只是方便叙述下 面求解演算,类似的还有 $X_2, X_3, X_4 和 X_5$ 。

将 5.1 节中的置信度、权值和阈值等模糊信息 引人故障树。以事件 $p_2, p_4, p_6 和 p_9 为例, p_2=0.69,$ $p_4=0.9, p_6=0.75, p_9=0.93, \omega_{2,2}=1, \omega_{2,5}=0.33,$ $\omega_{4,5}=0.46, \omega_{6,5}=0.21, \omega_{4,8}=0.64, \omega_{9,8}=0.36, 根据$ 1.2 节中的模糊推理算法, $p_2\omega_{2,2}=0.69>0.5,$ $p_2\omega_{2,5}+p_4\omega_{4,5}+p_6\omega_{6,5}=0.80>0.5, p_4\omega_{4,8}+p_9\omega_{9,8}=$ $0.91>0.5, 求解之后, p_{13}=0.69, p_{14}=0.91, p_{15}=$ $0.91, 相应的权值\omega_{13,11}=0.58, \omega_{14,11}=0.42, X_4=$ $p_{13}\omega_{13,11}+p_{14}\omega_{14,11}=0.78>0.5, p_{15}, p_{16}, p_{17}$ 通过或

Fig.6 The fault tree model

门连接,依据模糊产生规则,不满足继续传递条件。 因此,由X₄导致*p*_{a1}风扇部件故障,与正向推理结论 一致,验证了正向推理的正确性。

5.2 反向推理验证

表 5 为某型号涡扇发动机 2010—2019 年期间 记录的风扇部件维修记录数据,进行统计处理后验 证反向推理的正确性。

	Tab.5Fan component maintenance record data							
易损件及标准件			玉准件	故障情况及检修记录				
	序号	名称	严酷度 等级	维修日期	故障记录	检查 内容		
	1	风扇轴	II	2010-10-11	例行检修	p_{16}, p_{17}		
	2	风扇轮	II	2013-10-20	例行检修	p_2, p_8		
	3	叶片	II	2016-09-30	风扇喘振	p_{14}		
	4	控制软件	II	2019-10-15	控制程序交叠	p_9		

表 5 风扇部件维修记录数据 5.5 Fan component maintenance record dat

表 6 记录了风扇部件故障现象及故障原因等数据,该部件在这期间总共发生 329 次故障。因为时间长、尚未妥善保存等因素造成部分数据损毁或丢失,为了数据的真实性和准确性,用"其他"原因表征这部分数据。根据表 6 中的故障统计次数和库所置信度求取相关性系数,由相关性系数的高低判断反向推理的准确性。故障统计次数平均值 \bar{X} = 54.833,置信度的平均值 \bar{Y} =0.568,将二者代入式(10),得到r=0.899。

表6 故障记录相关数据					
	Tab.6 Faul	t recording d	lata		
故障 现象	故障原因	故障记录 统计次数	故障现象 库所置信度		
p_{13}	p_1, p_2, p_3, p_4, p_5	96	0.80		
p_{14}	p_2, p_4, p_6, p_7	68	0.73		
p_{15}	p_4, p_8, p_9	87	0.83		
p_{16}	p_{10}, p_{11}, p_{12}	30	0.46		
p_{17}	p_{11}, p_{12}	41	0.59		
p_{13}	其他	7	0		

$$r = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X}) (Y_{i} - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}}$$
(10)

根据相关性定义可确定,推理结果与实际故障 状态具有较强的相关性。

进一步与文献[15-16]进行对比来验证本研究方 法的准确性。选取现场2个案例,应用3种方法进行

分析。表7为3种方法对比结果,考虑实际工作情况, p。为控制程序必须检测。根据表7能得到本研究与 文献[15]具有相同诊断结果,稍优于文献[16]。文献 [15]采用专家诊断系统和基于BP神经网络的故障诊 断模型,该方法诊断率高、针对性强,但是需要大量实 际数据作为支撑,不同装备的数据获取难度不一样, 难以推广。文献[16]是基于云神经网络的故障诊断 模型,引入改进的自适应遗传算法,保证了故障诊断 的精度和效率,但是该文主要对算法进行改进,文中 数据靠神经网络进行模拟训练,数据的可信度难以得 到保证,装备出厂时会有相应的FMECA信息。本研 究则是根据FMECA信息和系统结构框图建立装备 的测试-故障诊断一体化模型,根据测试性模型对系 统进行测试性设计,根据FPN对子系统进行故障诊 断,该模型不仅能够处理复杂的故障传播过程,还可 以根据推理算法将该过程定量转化为数学模型,对故 障进行精确定位以及故障预测。

表 7 与其他方法诊断结果的比较 Tab.7 Diagnostic results compared with different models

案例	故障现象	现场诊	现场诊断		诊断结果	社田泥松	结果
		断结果	故障模式	区财力伝	正确性	泊木禰似	误判
1		₱ ₁₃	风扇转子封严篦齿与整流 器的径向间隙不符合要求	文献[15]	$p_1 p_2 p_8$	无	无
	风扇部件故障			文献[16]	$p_{2}p_{8}$	p_1	无
				本研究	$p_1 p_2 p_8$	无	无
2	风扇部件故障	₱ ₁₅	喘振	文献[15]	$p_4 p_8$	无	无
				文献[16]	$p_4 p_8$	无	无
				本研究	\$\$P_4\$P_8\$P_9	无	p_9

6 结 论

提出基于 Petri 网的测试-故障诊断一体化模型,该模型同时兼备测试性设计和故障诊断等功能。

2)对FPN的定义和元素的组成进行了详细的 论述,采用神经网络对权值等参数进行优化调整,弥 补了参数依赖专家经验以及不准确的问题。FPN 经过神经网络学习训练变成NFPN。

3) 以风扇部件为例,建立其系统级测试性模型 和子系统的NFPN模型。根据相关性矩阵得到测 试性指标,指导BIT设计。对子系统的NFPN模型 进行正、反推理,将故障传播过程定量转化为数学方 程,对故障进行精确定位,避免了故障检测的盲目性 和复杂性。 4)通过故障树和实际故障数据对推理算法进行验证,证明了本研究模型和算法的有效性。

参考文献

- [1] 田仲,石君友.系统测试性设计分析与验证[M].北京: 北京航空航天大学出版社,2003:17-19.
- [2] 尹园威,尚朝轩,马彦恒,等.层次测试性模型的评估 方法[J].北京航空航天大学学报,2015,41(1): 90-95.

YIN Yuanwei, SHANG Chaoxuan, MA Yanheng, et al. Method of testability evaluation using hierarchical testability model [J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1):90-95. (in Chinese)

- [3] 林闯.随机Petri网和系统性能评价[M].北京:清华大 学出版社,2005:19-35.
- [4] MAHULEA C, SEATZU C, CABASINO M P, et al. Fault diagnosis of discrete-event systems using continuous Petri nets [J]. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2012, 42(4): 970-984.
- [5] MANSOUR M M, WAHAB M A A, SOLIMAN W
 M. Petri nets for fault diagnosis of large power generation station [J]. Ain Shams Engineering Journal, 2013, 4(4): 831-842.
- [6] CODETTA-RAITERI D. The conversion of dynamic fault trees to stochastic Petri nets, as a case of graph transformation [J]. Electronic Notes in Theoretical Computer Science, 2005, 127(2): 45-60.
- [7] 王瑶.基于 Petri 网的四性一体化建模及仿真方法研究 [D].西安:西北工业大学,2016.
- [8] 翟禹尧,史贤俊,秦玉峰,等.基于层次广义随机Petri
 网的测试性建模新方法[J].兵工学报,2020,41(1):
 161-170.

ZHAI Yuyao, SHI Xianjun, QIN Yufeng, et al. A new testability model method based on hierarchical generalized stochastic Petri nets [J]. Acta Armamentarii, 2020,40(1):161-170. (in Chinese)

[9] 陈强,程学珍,刘建航,等.基于分层变迁的WFPN 电网故障分析[J].电工技术学报,2016,31(15): 125-135.

CHEN Qiang, CHENG Xuezhen, LIU Jianhang, et al. The analysis method of power grid fault based on hierarchical transition weighted fuzzy Petri net [J]. Transactions of China Electrotechnical Society, 2016, 31(15): 125-135. (in Chinese)

- [10] WANG L, CHEN Q, GAO Z J, et al. Knowledge representation and general Petri net models for power grid fault diagnosis[J]. IET Generation, Transmission & Distribution, 2015,9(9): 866-873.
- [11] LUO X, KEZUNOVIC M. Implementing fuzzy reasoning Petri-nets for fault section estimation [J].
 IEEE Transactions on Power Delivery, 2008, 23(2): 676-685.

- [12] EDWARDS C J, DAVIDSON E M, MCARTHUR S D J, et al. Flexible model-based alarm processing for protection performance assessment and incident identification [J]. IEEE Transactions on Power Systems, 2018,28(3):2584-2591.
- [13] 谢倩,乐晓波,周恺卿,等.模糊Petri 网库所集中 token初始值的确定方法[J].计算机工程与应用,2012, 48(12):49-52,62.
 XIE Qian, YUE Xiaobo, ZHOU Kaiqing, et al. Determination of token in initial place of fuzzy Petri nets[J]. Computer Engineering, 2012,48(12):49-52,62. (in Chinese)
- [14] HE Z Y, YANG J W, ZENG Q F, et al. Fault section estimation for power systems based on adaptive fuzzy Petri nets [J]. International Journal of Computational Intelligence Systems, 2014,7(4): 605-614.
- [15] 张莹松, 吴灿, 唐海龙, 等. 基于故障检测的某涡扇发动机维修决策方法[J]. 航空动力学报, 2017, 32(1): 82-88.

ZHANG Yingsong, WU Can, TANG Hailong, et al. Maintenance decision method of a turbofan engine based on fault detection [J]. Journal of Aerospace Power, 2017,32(1):82-88. (in Chinese)

[16] 王修岩,谷新铭,高铭阳,等.基于一种改进的云神经 网络涡扇发动机故障诊断[J].计算机工程与应用, 2014,22(4):988-990.

WANG Xiuyan, GU Xinming, GAO Mingyang, et al. Fault diagnosis of aeroengine's steady regular inspection based on cloud model and neural network[J]. Computer Measurement& Control, 2014, 22 (4) : 988-990. (in Chinese)

第一作者简介: 翟禹尧, 男, 1991年2月 生, 博士生。主要研究方向为测试性与 故障诊断。曾发表《基于广义随机 Petri 网的导弹系统测试性建模与指标评估方 法研究》(《兵工学报》2019年第40卷第 10期)等论文。

E-mail:412997283@qq.com