DOI:10.16450/j.cnki.issn.1004-6801.2022.03.014

基于 Kernel-MCCA 特征融合的齿轮故障诊断方法*

苏 宇, 温广瑞, 徐 斌, 张志芬, 石文杰 (西安交通大学机械工程学院 西安,710049)

摘要 针对转速波动工况下齿轮故障难以辨识的问题,提出了一种基于核函数的多重集典型相关分析方法 (kernel-multiset canonical correlation analysis,简称Kernel-MCCA),实现基于多传感信息的特征层融合,并将其应用 到转速波动工况下的齿轮断齿、点蚀、磨损以及剥落故障的辨识。首先,将多传感器采集的振动信号进行小波包分 解,计算能量特征矩阵;其次,利用多重集典型相关分析进行特征层融合,构建的融合特征输入到K近邻(K-nearest neighbor,简称KNN)分类器中并输出诊断结果;最后,利用齿轮振动实验台进行实验研究。结果表明,笔者所提的 特征融合方法比单传感器方法识别准确率提高了5%左右,比传统的多重典型相关分析特征融合方法识别准确率 提高了2%左右,可有效解决转速波动下齿轮故障状态辨识问题。

关键词 特征融合;齿轮故障;多重集典型相关分析;核函数 中图分类号 TH17; TP18

引 言

齿轮箱作为机械设备中的一种重要传动设备, 其运行状态正常与否直接关系到整个设备乃至整台 机组的工作状况。有调查表明,有接近60%的齿轮 箱故障是由齿轮失效引起的^[1]。齿轮箱传动系统在 工程实际现场中,往往处于非平稳运行状态,其中转 速波动的情况较为常见^[2]。因此,对于转速波动工 况下的齿轮故障诊断方法研究尤为重要。

现有的齿轮箱故障诊断方法大多为基于单一 传感器,因其无法全面表征齿轮运行状态,导致转 速波动工况下齿轮故障状态辨识准确率降低。针 对齿轮箱故障诊断的信息融合技术,可采用数据层 融合、特征层融合和决策层融合^[3]。目前,齿轮箱 故障诊断领域的应用研究以多分类器组合为代表 的决策层融合技术研究已成为热点,而针对特征层 融合方面的研究较少。特征层融合相较于决策层 融合可以保留更多的原始数据的信息,相较于数据 层融合进行了一定的维度压缩,避免了异类信息的 粒度差异大等问题。在现有的特征融合方法中,一 种是通过将多传感信息的特征矩阵进行串联形成 新的特征矩阵;另一种是利用复向量将2组特征矩 阵复合并联表示。这2种方法均不同程度地提高 了识别准确率^[4]。

CCA 在融合 2 组变量时取得较好的效果,但是 却无法融合多组特征。多重集典型相关分析可以处 理多组变量。Kettenring^[7]给出了多重集典型相关 分析 (multiset canonical correlation analysis,简称 MCCA)理论,该方法已被广泛应用于盲源分离^[8]、 目标识别^[9]和遥感图像分析^[10]等领域。MCCA能够 最大化多个传感器信息之间的互信息量^[11],充分利 用多个传感器之间的相关性信息互补,从而提高齿 轮故障状态的辨识准确率。MCCA方法在处理非 线性问题时效果不佳。

笔者在 MCCA 的基础上,将核函数引入 MC-CA中,提出了基于核函数的多重集典型相关分析 方法,并将其应用于转速波动工况下的齿轮故障状态辨识实验。

典型相关分析(canonical correlation analysis,简称 CCA)^[5]旨在研究 2 组随机变量之间的相关性, 被广泛应用于医学、气象、生物和化学等领域。孙 权森等^[4]提出了基于 CCA 理论的特征融合方法, 在高维小样本问题中使用主成分分析(principal components analysis,简称 PCA)与 CCA 结合的方 式解决协方差矩阵非奇异的问题。Carlos等^[6]提出 了正则化核典型相关分析(kernel canonical correlation analysis,简称 KCCA),解决非线性空间的盲 源分离问题。

^{*} 国家自然科学基金资助项目(51775409) 收稿日期:2020-03-31;修回日期:2020-08-19

1 原 理

1.1 典型相关分析

CCA作为一种经典的多元统计方法,旨在研究 2组随机变量之间的相关性^[12-13]。设随机变量*X*= $[x_1, x_2, \dots, x_p]^{T}$ 与*Y*= $[y_1, y_2, \dots, y_q]^{T}$ 均服从高斯 分布; *p*和*q*分别为样本*X*和*Y*的维度; *E*{*X*}= *E*{*Y*}=0,*E*{•}表示期望,则

$$\begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \end{bmatrix} \in N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \left(\begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \right) \quad (1)$$

其中: Σ 为协方差矩阵,假定协方差矩阵是非奇异的,即 $\Sigma_{12} = \Sigma_{21}^{T}$ 。

设*U*和*V*分别为随机变量*X*和*Y*的线性组合 (*V*{•}代表方差);*α*和β分别为随机变量*X*和*Y*的 投影矩阵^[14]。

$$\begin{cases}
U = \sum_{i=1}^{p} \alpha_{i} x_{i} = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{X} \\
V \{\boldsymbol{U}\} = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha} \\
V = \sum_{i=1}^{q} \beta_{i} y_{i} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{Y} \\
V \{V\} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Sigma}_{22} \boldsymbol{\beta}
\end{cases}$$
(2)

定义*U*和*V*的相关系数为ρ,求解投影矩阵α 和β,使其相关系数具有最大值。

$$\rho = \operatorname{Corr}\{U, V\} = \frac{\operatorname{Cor}\{U, V\}}{\sqrt{V\{U\}V\{V\}}} = \frac{\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\Sigma}_{12}\boldsymbol{\beta}}{\sqrt{(\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\Sigma}_{11}\boldsymbol{\alpha})(\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\Sigma}_{22}\boldsymbol{\beta})}}$$
(3)

如果式(3)中没有对 α 和 β 进行约束,显然满足 相关系数最大的解有无穷多个。为了使方程有唯一 解,加入约束条件 $\alpha^{T} \Sigma_{11} \alpha = \beta^{T} \Sigma_{22} \beta = 1$ 。

此时,优化模型为

$$\begin{cases} \max \rho(U, V) = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Sigma}_{12} \boldsymbol{\beta} \\ \text{s.t. } \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Sigma}_{22} \boldsymbol{\beta} = 1 \end{cases}$$
(4)

求解上述模型,得到投影矩阵α和β。采取下面 2种组合方式将典型相关变量组合,得到融合后的 新特征^[15]。

1) 求和方式:将典型相关变量按照式(5)进行 组合,获得融合特征 Z

$$\boldsymbol{Z} = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{X} + \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{Y} \tag{5}$$

2) 拼接方式:将典型相关变量首位相接的组合规则进行组合^[16-17]。

1.2 基于核函数的多重集典型相关分析

传统典型相关分析只能完成对2个特征集合的

特征融合,在处理多个(3个及以上)特征集合就束 手无策。因此,笔者提出一种基于核函数的多重集 典型相关分析的特征融合方法来处理非线性空间的 多传感信息,形成新的融合特征矩阵,从而实现故障 的准确辨识。

1.2.1 MCCA基础理论

MCCA 是 CCA 在多个变量集合的推广形式。 设多个服从高斯分布的随机变量 $X_1, X_2, ..., X_n$,其 特征维数分别为 m_i (i = 1, 2, ..., n),且设定 m_1 最小, 即特征维数应满足条件 $m_1 \le m_2 \le ... \le m_n$ 。不失 一般性,令 $E\{X_i\}=0$,即将特征矩阵进行零均值化 处理^[14]。

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \in N(\mu, \Sigma) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1n} \\ \Sigma_{21} & \Sigma_{22} & \cdots & \Sigma_{2n} \\ \vdots & \vdots & & \vdots \\ \Sigma_{n1} & \Sigma_{n2} & \cdots & \Sigma_{nn} \end{bmatrix} \end{pmatrix}$$
(6)

假定协方差矩阵 **Σ**是非奇异的,即**Σ**_{ij}=**Σ**^T_{ij}。将 $X^{\mathsf{T}} = [X_1^{\mathsf{T}}, X_2^{\mathsf{T}}, \cdots, X_n^{\mathsf{T}}]$ 和 $U^{\mathsf{T}} = [U_1^{\mathsf{T}}, U_2^{\mathsf{T}}, \cdots, U_n^{\mathsf{T}}]$ 进行线性组合,得到

$$\begin{cases} U_{1} = \boldsymbol{\alpha}_{1}^{\mathrm{T}} X_{1} \\ V \{ U_{1} \} = \boldsymbol{\alpha}_{1}^{\mathrm{T}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}_{1} \\ U_{2} = \boldsymbol{\alpha}_{2}^{\mathrm{T}} X_{2} \\ V \{ U_{2} \} = \boldsymbol{\alpha}_{2}^{\mathrm{T}} \boldsymbol{\Sigma}_{22} \boldsymbol{\alpha}_{2} \\ U_{3} = \boldsymbol{\alpha}_{3}^{\mathrm{T}} X_{3} \\ V \{ U_{3} \} = \boldsymbol{\alpha}_{3}^{\mathrm{T}} \boldsymbol{\Sigma}_{33} \boldsymbol{\alpha}_{3} \\ \vdots \\ U_{n} = \boldsymbol{\alpha}_{n}^{\mathrm{T}} \boldsymbol{X}_{n} \\ V \{ U_{n} \} = \boldsymbol{\alpha}_{n}^{\mathrm{T}} \boldsymbol{\Sigma}_{mn} \boldsymbol{\alpha}_{n} \end{cases}$$
(7)

由式(7)求出散布矩阵

$$\boldsymbol{\Sigma}_{U} = \begin{bmatrix} \boldsymbol{\alpha}_{1}^{\mathrm{T}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{1}^{\mathrm{T}} \boldsymbol{\Sigma}_{12} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{1}^{\mathrm{T}} \boldsymbol{\Sigma}_{1n} \boldsymbol{\alpha}_{n} \\ \boldsymbol{\alpha}_{2}^{\mathrm{T}} \boldsymbol{\Sigma}_{21} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2}^{\mathrm{T}} \boldsymbol{\Sigma}_{22} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{2}^{\mathrm{T}} \boldsymbol{\Sigma}_{2n} \boldsymbol{\alpha}_{n} \\ \vdots & \vdots & & \vdots \\ \boldsymbol{\alpha}_{n}^{\mathrm{T}} \boldsymbol{\Sigma}_{n1} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{n}^{\mathrm{T}} \boldsymbol{\Sigma}_{n2} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{n}^{\mathrm{T}} \boldsymbol{\Sigma}_{nn} \boldsymbol{\alpha}_{n} \end{bmatrix}$$
(8)

类比于2组变量间的典型相关分析中的定义方 式与规则,设 $U_i = U_{ik}, a_i = a_{ik}, \Sigma_U = \Sigma_{Uk}, 其中: k = 1, 2, \dots, m_{\min} | m_{\min} = \min(m_1, m_2, \dots, m_n)_{\circ}$

在传统典型相关分析中,通过求解2组组合向 量之间的相关系数 $\rho = Corr\{a^T X, \beta^T Y\}$ 来度量2组 变量之间的相关性。在多重典型相关分析中,需要 同时最大化所有组合变量之间的相关性。

为最大化组合变量的相关性,采取以下函数来 优化散布矩阵 Σ_{Uo} 。

1) 函数 SUMCOR:最大化散布矩阵中所有元 素之和,即求 $V = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i^{\mathsf{T}} \boldsymbol{\Sigma}_{ij} a_j$ 的最大值;

2) 函数 SSQCOR:最大化散布矩阵中所有元 素的平方和,即求 $W = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i^T \Sigma_{ij} a_j)^2$ 的最大值;

3)函数 MAXVAR:最大化散布矩阵的最大特 征值,即求解λ₁的最大值;

4) 函数 MINVAR: 最小化散布矩阵的最小特征值, 即求解 λ_n 的最小值;

5) 函数 GENVAR:最小化散布矩阵的行列式 值,即求解 det $\boldsymbol{\Sigma}_{U} = \prod_{i=1}^{n} \lambda_{i}$ 的最小值。

分别通过上述5种方式和以下4种约束对目标 函数进行求解,将得到的典型相关变量通过CCA方 法进行组合,得到融合后的特征^[18]。

1) 每个特征集合的投影向量应为单位向量,即 需满足 $\boldsymbol{\alpha}_i^{\mathsf{T}}\boldsymbol{\alpha}_i = 1;$

2) 投影向量之和应为单位向量, 即 $\sum_{i=1}^{n} \alpha_{i}^{T} \alpha_{i} = 1;$

3) 典型变量具有单位方差,即满足 $\boldsymbol{\alpha}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{ii}\boldsymbol{\alpha}_{i}=1;$

4) 典型变量方差之和为1, 即
$$\sum_{i=1}^{n} \alpha_i^{\mathrm{T}} \boldsymbol{\Sigma}_{ii} \alpha_i = 1_{\circ}$$

1.2.2 Kernel-MCCA

CCA和MCCA理论均服从线性空间的假定, 而由于齿轮箱传动系统的齿轮发生故障时,在转速 波动工况下往往表现出较强的非线性关系,导致直 接使用CCA方法和MCCA方法进行特征融合时达 不到理想的效果,而核函数是解决这个问题的有效 途径。基于核函数的多重典型相关分析的特征融合 方法的基本思想是:把低维空间的数据映射到高维 空间(核空间),通过核函数在核函数空间进行多重 集典型相关分析特征融合,其流程图如图1所示。

基于上述理论和方法,笔者提出的实验处理流 程如图2所示。首先,采集多个传感器的齿轮转速 波动工况振动数据,利用小波包能量方法提取特征; 其次,通过笔者提出的基于核函数的多重集典型相 关分析进行特征融合^[19];最后,将融合特征输入到K 近邻分类器中输出诊断结果。

Fig.2 Experimental processing flowchart

2 齿轮箱实验数据获取

2.1 实验方案

图 3 为齿轮箱实验台轴系示意图。图 4 为齿轮 箱实验台实物图。图 3,4 所示的齿轮振动实验台为 研究所自行设计,包括直流驱动电机、直流发电机、

图 4 齿轮箱实验台实物图 Fig.4 Gear box experiment table

齿轮箱及控制柜。电机与减速齿轮箱之间采用刚性 联轴器连接,轴II配有5个齿轮,分别用于模拟不同 齿轮故障,通过换挡手柄控制轴I、轴III齿轮与轴II 齿轮啮合关系。

模拟齿轮箱在实际运转过程中常见的4种故障 状态,图5为齿轮故障模拟图。

(a) Case-crush (b) Pitting (c) Broken gear (d) Gear abrasion
 图 5 齿轮故障模拟图
 Fig.5 Gear failure simulation diagram

2.2 数据采集

以风力发电机为例,其正常工作时转速在 1200~1500 r/min范围内波动,笔者实验过程模 拟工程实际现场转速波动工况,转速设为1000± 200 r/min,实验采集频率为8192 Hz,采样长度为 1 s。振动信号由安装在轴承座上的3个加速度传感 器获得,具体安装位置如图3所示。其中:1号测点 位于近电机端齿轮箱中间轴轴承座位置;2号测点 位于远电机端齿轮箱中间轴轴承座位置;3号测点 位于远电机端齿轮箱中间轴轴承座位置;3号测点 方远电机端齿轮箱和间轴轴承座位置。同步采集 3个测点振动加速度传感器信号。每个传感器在5 种状态(正常状态、齿面剥落、齿面点蚀、断齿、齿面 磨损)下采集360组数据。

3 数据验证

3.1 小波包能量特征提取

由于小波包分析能获得更高的时频分辨率,具 有对非平稳信号较好的特征表征能力,因此更加适 用于齿轮转速波动工况下数据的特征提取^[20-21]。选 择适合非平稳信号特征提取的"meyer"小波基函 数,根据峭度指标确定最佳分解层数为4,将信号独 立地分解到16个特征频带中,计算每个特征频带的 能量,得到16维特征矩阵。图6为小波包节点能量 特征直方图。

Fig.6 Histogram of energy characteristics of wavelet packet nodes

当齿轮分别处于正常、磨损、断齿、点蚀以及剥 落状态时,小波包节点能量特征分布的频带范围和 能量百分比的大小均有差异。为更加直观地描述小 波包能量特征的频带分布差异,随机选取某通道下 齿轮5种状态的能量分布色谱图如图7所示。可见, 当齿轮处于不同状态时,其能量分布的频带不同,能 量大小也有差异。因此,可以将小波包节点能量特 征作为区分齿轮5种状态的特征指标。

3.2 数据分析

采用小波包能量特征提取方法分别提取5种齿 轮故障状态下3路振动传感器信号的小波包能量特 征,从每种状态下的360个样本中随机抽取180个作 为训练样本,合计900个训练样本,其余180个样本 作为测试样本(合计900个测试样本)。利用KNN 进行分类,为了排除实验偶然因素,重复实验100 次。下述实验均采取上述特征提取方式、训练样本 和测试样本的选取方式。

3.2.1 单一传感器特征准确率对比分析

将3个传感器信号单独进行准确率对比分析, 分别提取其振动信号的小波包能量特征,输入到 KNN分类器中,重复实验计算平均准确率。各传感 器齿轮故障辨识准确率对比如表1所示。

表1 各传感器齿轮故障辨识准确率对比 Tab.1 Comparison of accuracy of gear identification of sensors

 传感器编号
 准确率/%

 1#
 89.95

 2#
 86.49

 3#
 83.68

可见,1#传感器的辨识准确率最高,2#传感器 次之,3#传感器最低。分析原因,1#传感器与2#传 感器安装在故障齿轮轴(轴Ⅱ,见图3)支撑轴承的 轴承座上;1#传感器安装位置距离故障齿轮啮合位 置最近,受传递路径影响最小,获得的振动数据更贴 近真实情况,因而1#传感器准确率最高。2#传感器 安装在与1#传感器同轴的另一端支撑轴承的轴承 座上,而3#传感器安装位置在高速轴(轴Ⅲ,见图3) 远电机端的支撑轴承的轴承座上,安装位置距离故 障齿轮啮合位置最远,受传递路径影响最大,因此准 确率最低。

3.2.2 双传感器融合特征准确率对比分析

将不同传感器信号提取的特征按照特征维数方向首位相连,得到拼接后的特征矩阵的方法称为拼接法。分别将1#,2#传感器,1#,3#传感器以及2#, 3#传感器信息提取到的小波包能量特征采用拼接法 得到融合特征输入到KNN分类器中,为排除拼接顺 序对准确率的影响,将拼接顺序交换后与交换前得 到的齿轮故障辨识准确率取平均值,得到融合双传 感器信息齿轮故障辨识准确率对比如表2所示。

表 2 融合双传感器信息齿轮故障辨识准确率对比 Tab.2 Comparison of accuracy of gear fault identification based on dual sensor information

传感器编号	准确率/%
拼接1#传感器和2#传感器	90.08
拼接1#传感器和3#传感器	89.63
拼接2#传感器和3#传感器	87.97

对比表1和表2发现,采用拼接法的融合特征 进行转速波动工况下的齿轮故障辨识,准确率虽有 提升,但效果并不明显。这是因为拼接法只是简单 地将2个传感器得到的特征进行拼接,利用多个传 感器信息的同时也引入了更多的不相关信息,且未 对不相关信息进行抑制,因此利用拼接后的特征进 行故障辨识,其准确率提升不明显。

为了验证引入核函数的CCA算法是否对转速 波动工况下的齿轮故障辨识准确率有提高,这里对 比KCCA与CCA融合效果。KCCA使用的核函数 为高斯核函数^[22],笔者分别使用CCA方法和KCCA 方法融合1#和2#传感器,1#和3#传感器以及2#和 3#传感器信息,将得到的融合特征输入到KNN分类 器中,得到其特征融合方法效果对比如图8所示。

图 8 CCA与KCCA特征融合方法效果对比

Fig.8 Effect comparison of CCA and KCCA feature fusion methods

使用 KCCA 方法融合 2个传感器信息得到的特征进行转速波动工况下的齿轮故障状态辨识,其准确率高于使用 CCA 方法。合理使用核函数后的 CCA 方法可以有效提高齿轮转速波动工况下的故障状态辨识率。

采用 CCA 和 KCCA 特征融合算法融合各个传 感器信息后的齿轮故障辨识准确率相较于单个传感 器有一定程度的提升,但由于只融合了 2个传感器 的信息,对传感器信息综合利用不足,提升效果并不 明显。受限于传统的 CCA 特征融合方法只能处理 2个传感器信息的特点,若要充分利用多个传感器 信息,必须采用一种可以处理多传感器信息的方法。 3.2.3 多传感器融合特征准确率对比分析

采用笔者提出的 Kernel-MCCA 特征融合方法 可实现对3个传感器的特征层融合,选用核函数为 高斯核函数。将笔者提出方法与拼接法,PCA,核 主成分分析(kernel principal component analysis,简 称 KPCA)以及 MCCA 特征层融合方法进行对比, 各方法融合多源信息故障辨识准确率如表3所示。

	表 3	各方法融合	多源	信息故障辨识	准确率
Tab.3	The	accuracy	of	multi-source	information

fault identification in different methods

方 法	准确率/%
拼接法	88.67
PCA	82.27
KPCA	83.41
MCCA	92.79
Kernel-MCCA	94.89

采用拼接法得到的融合特征进行齿轮故障状态 辨识,其准确率相较于单一传感器提升效果不明 显。使用PCA和KPCA特征融合方法得到的融合 特征进行齿轮故障状态辨识,其准确率并没有提升, 反而相较于单一传感器有不同程度的降低。分析原 因,因为PCA和KPCA方法本质上是最大化方 差^[22],用于去除多个变量之间的相关性,以达到降 低特征维度的目的。笔者所提到的数据来源是多个 传感器的信息,各个传感器信息之间具有高度的相 关性,去除相关性之后,有用的信息量实质上是变少 了,因此无论使用PCA还是KPCA方法进行特征融 合,均会丢失原始单一传感器获得的信息,其准确率 会有不同程度的降低。

MCCA作为一种分析2组变量相关性的方法, 可以充分利用2个传感器的之间的相关信息,最大 化多组变量之间的互信息量,从而提升融合后特征 的相关信息量,实现多个传感器之间的信息综合利 用,实现特征融合,因此其故障状态辨识率更高。在 转速波动工况下的齿轮振动数据表现出较强的非线 性,MCCA方法是基于线性空间假设的,无法很好 地处理非线性问题,将核函数引入到MCCA中,在 处理多传感特征融合的同时具备较好地处理非线性 问题的能力。

4 结 论

1)相较于单一传感器,利用CCA,KCCA特征 融合方法进行特征融合,为有效提高齿轮故障状态 辨识提供了一种新思路。

2)将 MCCA 理论引入特征层融合,通过多传 感器信息的特征融合,解决了 CCA 特征融合方法无 法处理的多传感特征融合问题。

3)将核函数与MCCA算法相结合,弥补了 MCCA处理非线性问题的不足,将转速波动工况下 的齿轮故障状态辨识准确率提高了2%。

参考文献

- [1] 刘慧玲.基于粗糙集理论的齿轮箱故障诊断研究[D]. 太原:中北大学,2013.
- [2] 邹今春,沈玉娣.变工况齿轮箱故障诊断方法综述[J]. 机械传动,2012,36(8):124-127.
 ZOU Jinchun, SHEN Yudi. Review of gearbox fault diagnosis techniques under variable conditions[J]. Journal of Mechanical Transmission, 2012, 36(8):124-127.(in Chinese)
- [3] JIAO J, YUE J, PEI D. Multi-sensor information fusion method for vibration fault diagnosis of rolling bearing [J]. Materials Science and Engineering, 2017, 241: 12034.
- [4] 孙权森,曾生根,王平安,等. 典型相关分析的理论及 其在特征融合中的应用[J]. 计算机学报,2005(9): 1524-1533.

SUN Quansen, CENG Shenggen, WANG Pingan, et al. The theory of canonical correlation analysis and its application to feature fusion [J]. Chinese Journal of Computers, 2005(9): 1524-1533. (in Chinese)

- [5] HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28(3/4): 321-327.
- [6] CARLOS A, JAK S. A regularized kernel CCA contrast function for ICA[J]. Neural Networks, 2008, 21(2/3): 170-181.
- [7] KETTENRING J R. Canonical analysis of several sets

of variables[J]. Biometrika, 1971, 58(3): 433-451.

- [8] LI X, ADALI T, ANDERSON M. Joint blind source separation by generalized joint diagonalization of cumulant matrices[J]. Signal Processing, 2011, 91(10): 2314-2322.
- [9] 陈惠红,刘世明. 基于多重集典型相关的深度特征融 合及 SAR 目标识别方法[J]. 电子测量与仪器学报, 2019,33(9):57-63.

CHEN Huihong, LIU Shiming. Fusion of deep features via multiset canonical correlations analysis with application to SAR target recognition [J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(9): 57-63.(in Chinese)

- [10] LIN D, XU X. A novel method of feature extraction and fusion and its application in satellite images classification[J]. Remote Sensing Letters, 2015, 6(9): 687-696.
- [11] 潘瑜,徐丽燕,王静,等.基于多重集典型相关分析的 图像融合方法[J]. 航天返回与遥感,2011,32(3): 69-76.

PAN Yu, XU Liyan, WANG Jing, et al. An image fusion method based on multi-set canonical correlation analysis [J]. Spacecraft Recovery & Remote Sensing, 2011, 32(3): 69-76. (in Chinese)

[12] 吕卓纹,王一斌,邢向磊,等.加权CCA多信息融合的 步态表征方法[J].智能系统学报,2019,14(3): 449-454.

LV Zhuowen, WANG Yibin, XING Xianglei, et al. A gait representation method based on weighted CCA for multi-information fusion[J]. CAAI Transactions on In-telligent Systems, 2019, 14(3): 449-454. (in Chinese)

- [13] 杨静,高希占.边界监督多重集典型相关分析[J].聊 城大学学报(自然科学版),2019,32(3):13-22.
 YANG Jing, GAO Xizhan. Marginal supervised multiset canonical correlation analysis [J]. Journal of Liaocheng University (Natural Sciences), 2019, 32(3): 13-22. (in Chinese)
- [14] NIELSEN A A. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data [J]. IEEE Trans Image Process, 2002, 11(3): 293-305.
- [15] JING X, LI S, LAN C, et al. Color image canonical correlation analysis for face feature extraction and

recognition[J]. Signal Processing, 2011, 91(8): 2132-2140.

- [16] HAGHIGHAT M, ABDEL-MOTTALEB M, ALHALABI W. Fully automatic face normalization and single sample face recognition in unconstrained environments [J]. Expert Systems with Applications, 2016, 47(1): 23-34.
- [17] HAGHIGHAT M, ABDEL-MOTTALEB M, ALHALABI W. Discriminant correlation analysis: realtime feature level fusion for multimodal biometric recognition [J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9): 1984-1996.
- [18] LIU W, YANG X, TAO D, et al. Multiview dimension reduction via Hessian multiset canonical correlations [J]. Information Fusion, 2018, 41: 119-128.
- [19] HE J, YANG S, PAPATHEOU E, et al. Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes [J]. Journal of Mechanical Engineering Science, 2019, 233 (13) : 4764-4775.
- [20] GUO J, SHI Z, LI H, et al. Early fault diagnosis for planetary gearbox based wavelet packet energy and modulation signal bispectrum analysis [J]. Sensors, 2018, 18(9): 2908-2908.
- [21] SOUILEM N, ELAISSI I, MESSAOUD H. On the use of KPCA pre-filtering for KCCA method [J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9): 4331-4340.
- [22] CORREA N M, EICHELE T, ADALI T, et al. Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI [J]. Neuro Image, 2010, 50(4): 1438-1445.

第一作者简介:苏宇,男,1994年11月 生,硕士生。主要研究方向为机械运行 状态信号处理及故障诊断。 E-mail: syweiss@163.com

通信作者简介:温广瑞,男,1976年7月 生,博士、教授、博士生导师。主要研究 方向为机械故障诊断与健康管理。 E-mail:grwen@mail.xjtu.edu.cn