DOI:10.16450/j.cnki.issn.1004-6801.2022.06.003

数据驱动的凸轮式绝对重力仪微小故障诊断*

牟宗磊¹, 王 \mathbb{R}^2 , 张 \mathcal{G}^2 , 郝妮妮², 胡 若³

(1.山东科技大学电气与自动化工程学院 青岛,266590)
 (2.山东科技大学机械电子工程学院 青岛,266590)
 (3.中国计量科学研究院 北京,100029)

摘要 针对凸轮式绝对重力仪微小故障幅值小、故障特征微弱及易被噪声掩盖而难于发现等特点,提出了一种融合 改进集总平均经验模态分解(modified ensemble empirical mode decomposition,简称 MEEMD)、能量熵以及多尺度 排列熵(multi-scale permutation entropy,简称 MPE)的凸轮式绝对重力仪微小故障诊断方法。通过 MEEMD 算法对 凸轮式绝对重力仪不同工况下的振动信号进行自适应分解,筛选出有效的本征模态函数(intrinsic mode function,简称 IMF),提取出振动数据中具有敏感特征的多尺度排列熵和能量熵,将提取的多维特征向量矩阵输入到以径向基 函数(radial basis function,简称 RBF)为核函数的支持向量机(support vector machine,简称 SVM)中,基于数据实现 了凸轮式绝对重力仪微小故障的精确诊断。试验结果表明,该方法可以有效区分凸轮式绝对重力仪的各类微小故障,识别准确度达到 97.1%,解决了因微小故障导致凸轮式绝对重力仪测量精度低的问题,实现了重力仪微小故障 的快速溯源和精准定位,具有较好的工程应用前景。

关键词 凸轮式绝对重力仪;故障诊断;改进集总平均经验模态分解;能量熵;多尺度排列熵 中图分类号 TH762

引 言

高精度的绝对重力场信息在大地测量、资源勘 探和地球物理学研究等方面具有十分重要的应用价 值^[1]。随着电子信息技术、激光干涉技术及自动控 制技术的快速发展,绝对重力值的测量精度达到了 新的水平,同时也对绝对重力值的测量设备提出了 更高的要求。凸轮式绝对重力仪是新兴的测量重力 加速度的精密计量仪器,主要由凸轮、拖车、平衡配 重块及电机等部件组成,具有结构小巧、测量效率高 及携带方便等优点,是绝对重力仪发展的重要方向 之一^[2]。

凸轮式绝对重力仪的工作原理是利用凸轮构造 出让物体自由下落的机构,利用激光干涉法和高精 度时间间隔测量技术得到物体自由下落时的距离和 时间,经过多次数据拟合得到重力加速度。凸轮式 绝对重力仪测量过程中,由于各机械部件紧密耦合 且存在频繁往复式运动,长时间工作时易出现配重 块松动、电机联轴器中心偏移及地脚螺栓松动等微 小故障,虽然不会导致设备停机,但由此产生的振动 会严重影响凸轮式绝对重力仪的测量精度,甚至产 生错误的测试结果^[3]。凸轮式绝对重力仪特殊的舰载使用环境以及高精度的测量要求,导致现有的数据驱动的故障诊断方法很难直接对其进行精准的故障诊断^[4]。

传统的时频域分析方法很难精细化提取出微小 故障的特征信息,不利于故障状态的辨识以及后期 设备状态的健康管理^[5]。Huang等^[6]提出的经验模 态分解(empirical mode decomposition,简称 EMD) 是一种自适应时频信号分解方法,可以将信号自适 应分解为一系列 IMF,已成功应用于信号处理、故 障诊断等领域^[7]。然而,EMD存在模态混叠和端点 效应的问题。为了解决 EMD 的模态混叠问题,在 EMD中引入噪声辅助分析,总体经验模态分解(ensemble empirical mode decomposition,简称 EEMD) 和补充的总体经验模态分解(complete ensemble empirical mode decomposition, 简称 CEEMD) 被相 继提出[8-9],并在故障诊断领域取得了良好的应用效 果,但该类算法会因添加白噪声幅值和迭代次数不 合适而产生很多虚假分量[10]。此外,在滚动轴承的 故障诊断中,逐渐应用熵值的变化来衡量信号的不

^{*} 国家重点研发计划资助项目(2022YFF0607504);山东省自然科学基金资助项目(ZR2020KE061,ZR2021MF027) 收稿日期:2020-08-10;修回日期:2020-10-12

确定性,如基于样本熵、近似熵及模糊熵的故障诊断 方法,但是单一熵值故障诊断方法的鲁棒性、准确性 有待进一步提高,不能全面描述故障的特征 信息^[11-12]。

针对以上问题,笔者开展了数据驱动的凸轮式 绝对重力仪微小故障诊断方法的研究,搭建了凸轮 式绝对重力仪振动测试系统,采集不同工况下多测 点位置的振动数据。通过改进的MEEMD完成了 振动数据的自适应分解,基于能量熵和多尺度排列 熵构建了多维故障特征向量矩阵,利用SVM实现 了凸轮式绝对重力仪配重块松动等常见的6种微小 故障的精准溯源与快速诊断。

1 改进的 MEEMD 算法

在文献[13-14]的研究基础上,笔者所提的改进 MEEMD算法自适应分解原始信号*X*(*t*)步骤如下。

1) 在原始信号 X(t) 中成对添加正负 2 组绝对 值相等的白噪声 $\lambda n_+(t)$ 和 $\lambda n_-(t)$, 分别对其进行集 总平均次数相等的 EEMD 自适应分解, 可得

$$X(t) + \lambda n_{+}(t) \underbrace{\text{EEMD}}_{i=1} \sum_{i=1}^{m} \left[\frac{\sum_{j=1}^{n} [C_{+i,j}(t)]}{n} \right] + (1)$$

$$\frac{\sum_{j=1}^{n} p_{+j}(t)}{n} = \sum_{i=1}^{m} \overline{[C_{+i}(t)]} + \overline{p_{+}(t)}$$

$$X(t) + \lambda n_{-}(t) \underbrace{\text{EEMD}}_{i=1} \sum_{i=1}^{m} \left[\frac{\sum_{j=1}^{n} [C_{-i,j}(t)]}{n} \right] + (2)$$

$$\sum_{j=1}^{n} p_{-j}(t) = 1$$

$$\frac{\sum_{j=1}^{p-j(t)}}{n} = \sum_{i=1}^{m} \overline{\left[C_{-i}(t)\right]} + \overline{p_{-}(t)}$$

$$(t) \stackrel{\text{tr}}{\to} \mathbf{Y}(t) \stackrel{\text{tr}}{\to} \stackrel{\text{tr}}{\to} \frac{1}{n} \sum_{i=1}^{m} \overline{\left[C_{-i}(t)\right]} + \overline{p_{-}(t)}$$

其中: $C_{+i,j}(t)$ 为X(t)中添加 $\lambda n_{+}(t)$ 后第j次 EEMD 分解得到的第i个 IMF 分量; $p_{+j}(t)$ 为第j次 EEMD 分解得到的残差分量; $\overline{C_{+i}(t)}$ 为 EEMD 最终分解得 到的第i个 IMF 分量; $\overline{p_{+}(t)}$ 为最终得到的残差; $C_{-i,j}(t)$ 为X(t)中添加 $\lambda n_{-}(t)$ 后第j次 EEMD 分解得 到的第i个 IMF 分量; $p_{-j}(t)$ 为第j次 EEMD 分解得 到的残差分量; $\overline{C_{-i}(t)}$ 为 EEMD 最终分解得到的第i个 IMF 分量; $\overline{p_{-}(t)}$ 为 最终得到的 残差; $i = 1, 2, \dots, m; j = 1, 2, \dots, n_{\circ}$

2) 将分解得到的2组 IMF 分量进行均值运算,

可消除大部分白噪声在信号中的残差,进而减小信 号的重构误差

$$C_{i}(t) = \frac{\left(\overline{C_{+i}(t)} + \overline{C_{-i}(t)}\right)}{2} \quad (i = 1, 2, \cdots, m) \quad (3)$$

3) 计算各 IMF 的排列熵,设置阈值 θ,根据排 列熵值^[15]和互相关系数判定 C_i(t)是异常信号还是 平稳信号。

4)根据判断准则,如果C_i(t)是异常信号,该组 分量需要继续进行EMD自适应分解,以剔除虚假 信息并得到标准的IMF分量。

5) 将自适应分解得到的 IMF 分量按频率从高频到低频依次排列,则改进的 MEEMD 自适应分解 信号 *X*(*t*)可以表示为

$$X(t) \underline{\text{MEEMD}} \sum_{k=1}^{m} [C_k(t)] + R(t)$$
 (4)

其中:R(t)为改进的MEEMD自适应分解信号X(t)得到的剩余残差分量。

通过改进 MEEMD 自适应分解得到的各 IMF 分量,可以有效剔除绝对重力仪振动信号中的虚假 分量,得到不同工况下振动信号的时频特性。

2 基于熵值的故障特征提取

凸轮式绝对重力仪的微小故障信号是复杂的非 稳态、时变耦合信号,振动幅值较小,故障特征不明 显,单一的故障特征难以实现对各类微小故障的精 细化区分。为了量化基于改进 MEEMD 算法得到 的每个模态分量所包含的故障特征信息,引入熵理 论^[16],选用能量熵与多尺度排列熵这 2 个特征量进 行凸轮式绝对重力仪微小故障的识别与诊断。

2.1 能量熵

通过改进的 MEEMD 算法将原始振动信号分 解成 $n \uparrow IMF$ 分量及残余分量 R(t),依次用 E_1, E_2 , …, E_n 表示 $n \uparrow IMF$ 分量的能量。其中,残余分量包 含的振动信号微弱,其能量接近于0,所以在忽略残 余分量能量的前提下,原始振动信号的总能量与各 IMF 分量的能量和近似相等^[17]。因为 $n \uparrow IMF$ 分量 分别包含了不同频率的振动,故 $E = \{E_1, E_2, \dots, E_n\}$ 形成了凸轮式绝对重力仪振动信号的能量特征在频 率域上的一种分布。因此,整个信号的能量可以定 义为

$$E_{c} = \int_{-\infty}^{+\infty} x^{2}(t) dt = \int_{-\infty}^{+\infty} \left[\sum_{i=1}^{n} x_{i}(t) \right]^{2} dt \quad (5)$$

其中: $x_i(t)$ 为第i个IMF; E_c 为整个信号能量。 可想到信号的能量感为

$$H_e = -\sum_{i=1}^n p_i \log p_i \tag{6}$$

其中: p_i 为第i个 IMF 能量占总能量的比值, $p_i = E_i/E_i$; H_e 为能量熵。

2.2 多尺度排列熵

排列熵(permutation entropy,简称 PE)是 Bandt^[18]提出的一种检测时间序列随机性和动力学 突变的方法,具有计算简单、抗干扰能力强、计算速 度快及输出结果直观等优点。多尺度排列熵(multiscale permutation entropy,简称 MPE)是在排列熵的 基础上,考虑多个时间尺度下的特征信息,可以更加 完整地描述时间序列的复杂性。多尺度排列熵的计 算原理^[19]如下。

1) 对时间序列进行多尺度粗粒化。

设对长度为*N*的一维时间序列*X*= [x_1, x_2, \dots, x_i]($i = 1, 2, \dots, N$)进行多尺度粗粒化, 得到新的时间序列 $y_i^{(s)}$ 为

$$y_{j}^{(s)} = \frac{1}{s} \sum_{i=(j-1)s+1}^{js} x_{i}$$
(7)

其中: $y_j^{(s)}$ 为不同尺度因子下的时间序列,1 $\leq s \leq N/s$; s为尺度因子。

2) 计算不同时间尺度下粗粒化的排列熵。

对式(7)中的y_i^(s)进行时间重构,可得

$$Y_{t}^{(s)} = \left\{ y_{t}^{(s)}, y_{t+\tau}^{(s)}, \cdots, y_{t+(m-1)\tau}^{(s)} \right\}$$
(8)

其中:m为嵌入维数;r为延迟因子。

$$y_{t+(j_1-1)r}^{(s)} \leqslant y_{t+(j_2-1)r}^{(s)} \leqslant \cdots y_{t+(j_m-1)r}^{(s)}$$
(9)

在此用 $\omega_j = \{j_1, j_2, \dots, j_m\}$ 表示重构时间序列中 各个元素初始位置的索引,共有m!种排列的可能。 统计每种排列类型出现的次数 N_i ,计算其对应的排 列出现的概率为

$$P_l^s = \frac{N_l}{n/s - m + 1} \tag{10}$$

定义时间序列在多尺度下的排列熵为

$$H_{P}^{s} = -\sum_{l=1}^{m!} P_{l}^{s} \ln P_{l}^{s}$$
(11)

当
$$P_l^s = \frac{1}{m!}$$
时, H_p^s 达到最大值 ln(m!)。对尺

度 s 下的排列熵进行归一化处理,最终得到归一化的多尺度排列熵为

$$H_P = H_P(m) / \ln(m!) \tag{12}$$

*H_p*值的变化可以反映出重力仪振动信号在不同时间尺度下的微弱变化。

3 基于SVM的微小故障诊断

基于能量熵、多尺度排列熵与SVM相结合的 凸轮式绝对重力仪微小故障诊断流程见图1。

图1 凸轮式绝对重力仪微小故障诊断流程图

Fig.1 The flow chart of incipient fault diagnosis for cam-driven absolute gravimeter

如图1所示,实现凸轮式绝对重力仪微小故障 诊断方法的步骤如下:

 1)通过搭建的凸轮式绝对重力仪振动测试平台,对不同测点、不同工况下的振动数据进行采集, 丰富试验的样本数据集;

2) 通过改进的 MEEMD 算法对所采集的样本 数据进行自适应分解,得到相应的 IMF 分量,并根 据相关系数筛选出主要的 IMF;

3)根据筛选出的主要IMF,结合时间尺度因子,计算出能量熵和多尺度排列熵作为故障特征 参数;

4)利用能量熵和多尺度排列熵构造多维特征 向量,输入到SVM中进行训练,并构建微小故障诊 断模块;

5)将实测数据经过处理后输入到构建的故障 诊断模块,即可实现凸轮式绝对重力仪的微小故障 诊断。

4 试验验证

4.1 振动数据获取

搭建的振动数据采集系统如图2所示,通过激 光测振仪(PDV-100)采集各个测点不同工况的振动 数据,主要有3个测点:底座、轴承座和端盖。

图 2 振动数据采集系统 Fig.2 The vibration acquisition system

各测点依次采集7种工况下的振动数据,分别 为正常工况(工况1)、配重块松动故障(工况2)、电 机联轴器中心偏移故障(工况3)、地脚螺栓松动故 障(工况4)、轴裂纹故障(工况5)、配重块摩擦故障 (工况6)以及凸轮固定螺丝松动故障(工况7)。其 中,选择最大采样频率为24 kHz,电机转速设定为 200 r/min,在保证分辨率的情况下,采样点数设定 为30720个。采集上述7种工况下的振动数据作为 原始数据,图3所示为端盖测点位置某组工况的原 始振动数据。

由图3可以看出,不同工况下的振动信号具有 一定的差异,但仅从时域上很难对故障数据进行识 别分类,需要对原始数据进行精细化特征提取。

4.2 故障特征提取

将原始振动信号用改进的 MEEMD 算法进行 分解处理,该算法通过排列熵将信号中的伪分量进 行剔除,然后通过相关系数对分解得到的 IMF 进行 筛选,选取互相关性较大的 IMF 作为主要的 IMF。 其中,改进的 MEEMD 算法相关参数设置如下:高 斯白噪声的幅值 Nstd=0.2,对数 Ne=100,最大分 解层数 maxmode=10,排列熵嵌入维数 m=6,时间 延时 $\tau=1$,排列熵阈值 $\theta=0.6$,互相关阈值 $\sigma=0.3$ 。

某组故障数据的部分分解结果如图4所示,各 IMF相关系数分布如图5所示。

由图4,5分析可知,改进的MEEMD算法将凸 轮电机联轴器中心偏移故障的信号从高频到低频依 次分解,各个IMF包含特定频段的振动信息。其 中:IMF₂~IMF₂为振动信号的高频部分,幅值较小,

Fig.5 Correlation coefficient distribution of each IMF

振动特征不明显,存在高频噪声;IMF₃~IMF₅幅值 较大,互相关性强,故障特征明显;IMF₆~IMF₁幅 值较小,互相关性弱,说明包含的振动信息较少或者 混有虚假成分。

通过筛选的主要 IMF 计算各种工况下振动数 据的能量熵,得到正常工况和故障工况的能量熵。 某组试验数据在3个测点处的能量熵分布情况如 表1所示。

表1 某组试验数据的能量熵分布 Tab.1 Energy entropy distribution for a set of test data

工况类别	底座处	轴承座处	端盖处
正常工况	1.9715	2.022 8	1.895 1
电机联轴器中心偏移故障	1.706 3	1.675 7	1.427 4
凸轮固定螺丝松动故障	1.830 5	1.910 8	1.7754
地脚螺栓松动故障	1.414 5	1.217 1	1.303 3
轴裂纹故障	$1.765\ 2$	1.753 3	1.607 5
配重块摩擦故障	1.601 8	1.730 2	1.543 9
配重块松动故障	1.885 9	1.877 3	1.736 5

由表1可以看出:凸轮式绝对重力仪在不同工 况下的能量熵有一定的差异,各个测点位置处的能 量熵也有一定的区别;微小故障能量变化较小,部分 能量熵特征值区别不大,故仅通过能量熵进行故障 区分容易造成较大诊断误差,影响诊断准确率。因此, 引入凸轮式绝对重力仪的第2个故障特征量,即MPE。

将筛选得到的主要 IMF 进行重构并计算各类 工况的多尺度排列熵,得到正常工况和故障工况的 多尺度排列熵。各类工况下排列熵随尺度因子的变 化如图 6 所示。

由图 6 对比分析可以看出:当尺度因子为 4 时, 底座测点和轴承座测点处不同工况下的熵值差异达 到最大;当尺度因子为 5 时,端盖测点不同工况下的 熵值差异达到最大。

表2为底座、轴承座及端盖3个测点处的尺度

因子分别取4,4,5时,某组试验数据的多尺度排列 熵分布。

Fig.6 MPE variation in different conditions with the scale factor

	表	2		某	维	li	じ验	数	据	的	多	尺	度	排	列	熵ら	} 才	त	
_		-	_	_		_													

Tab.2 MPE distribution for a set of test data

工况类别	底座处	轴承座处	端盖处
正常工况	0.663 2	0.683 0	0.589 6
电机联轴器中心偏移故障	0.862 1	0.914 4	0.899 1
凸轮固定螺丝松动故障	0.854 3	0.943 0	0.910 5
地脚螺栓松动故障	0.684 2	0.736 6	0.688 4
轴裂纹故障	0.758 2	0.784 1	0.747 3
配重块摩擦故障	0.809 5	0.810 4	0.768 3
配重块松动故障	0.899 2	0.929 4	0.922 1

4.3 微小故障诊断的实现

针对凸轮式绝对重力仪微小故障数据样本小的 特点,选用SVM进行微小故障诊断。为了实现故 障类型的多分类,采用6个二叉树分类器,选用径向 基核函数(radial basis function,简称 RBF)作为核函 数,采用交叉验证法,寻找SVM 的最优参数。

为验证诊断的有效性和准确度,将能量熵与多 尺度排列熵单独作为特征量进行故障诊断的结果, 与联合这2种熵值的诊断结果进行对比。具体为: 用每个测点各工况中的20组数据作为数据集,其中 每组数据均包含7种工况的数据,15组数据用于样 本训练,剩余5组数据进行验证测试,各方法的诊断 结果如图7所示,各方法诊断准确率对比如表3所 示。图7中工况类别1~7分别表示正常工况、电机

Fig.7 Diagnosis results of different methods

1073

	衣 5 谷力 広 诊 断 准 铏 卒 刈 比					
Tab.3	Accuracy	comparison	of	different	methods	
		11 244 -	r 7/2	He / M He	verte de / 0	

友 ÷ 注 込 些 / 在 本 示 ↓ し

诊断方法	分类正确数/总数	准确率/%
能量熵+SVM	26/35	74.3
MPE+SVM	31/35	88.6
MPE+能量熵+SV	VM 34/35	97.1

联轴器中心偏移故障、配重块松动故障、地脚螺栓松 动故障、轴裂纹故障、配重块摩擦故障和凸轮固定螺 丝松动故障。

由图7和表3可以看出:仅根据能量熵或多尺度 排列熵虽然能够诊断出凸轮式绝对重力仪的大多数 工况下的微小故障,诊断准确率分别为74.3%和 88.6%,但由于部分微小故障的特征信息较为相似, 易造成误诊断;将多尺度排列熵和能量熵相结合,丰 富了故障特征信息,提升了诊断的可靠性,诊断准确 率为97.1%,更好地实现了凸轮式绝对重力仪的微 小故障诊断。

为了进一步验证所提方法的有益性,同时选取概率神经网络^[20](probabilistic neural network,简称 PNN)和模糊神经网络^[21](fuzzy neural network,简称 FNN)2种故障诊断方法与本研究方法进行对比分析,3种方法得到的诊断结果如图8所示,其准确率比较如表4所示。

Fig.8 Diagnosis results of three methods

表 4 3 种方法的准确率比较 Tab.4 Accuracy comparison of three methods

诊断方法	分类正确数/总数	准确率/%
MPE+能量熵+SVM	34/35	97.1
MPE+能量熵+PNN	30/35	85.7
MPE+能量熵+FNN	25/35	71.4

由图 8 和表4 可以看出:对于相同的故障特征,3 种方法均可以实现凸轮式绝对重力仪部分微小故障 的诊断,但存在某种故障被误诊的现象;SVM 相较 于 PNN 和 FNN 有着更高的诊断准确率,在小样本 微小故障诊断方面具有一定的技术优势,很好地实 现了凸轮式绝对重力仪微小故障的分类与识别。

5 结束语

微小故障产生的振动会严重影响凸轮式绝对重 力仪的测量精度,针对凸轮式绝对重力仪微小故障 振动幅值较小、易被噪声掩盖而难于发现等特点,基 于多测点的工况数据,提出了一种数据驱动的基于 改进MEEMD算法、能量熵以及多尺度排列熵的凸 轮式绝对重力仪微小故障诊断方法。试验结果表 明,该方法在有效剔除信号中虚假分量的同时,精细 化提取出了基于熵值的故障特征向量,基于数据实 现了凸轮式绝对重力仪微小故障的精确可靠诊断, 具有良好的工程应用前景。

参考文献

 [1] 滕云田,吴琼,郭有光,等.基于激光干涉的新型高精 度绝对重力仪[J].地球物理学进展,2013,28(4): 2141-2147.

TENG Yuntian, WU Qiong, GUO Youguang, et al. New type of high-precision absolute gravimeter base on laser interference [J]. Progress in Geophysics, 2013, 28(4):2141-2147. (in Chinese)

[2] 张黎,邹彤,蒋冰莉.绝对重力仪的自由落体凸轮驱动器设计与仿真[J].大地测量与地球动力学,2018, 38(1):102-105.

ZHANG Li, ZOU Tong, JIANG Bingli. Design and simulation for cam driver based on absolute gravimeter [J]. Journal of Geodesy and Geodynamics, 2018, 38(1):102-105. (in Chinese)

- [3] HU R, MOU Z, WANG C, et al. Analysis of vibration characteristics for cam absolute gravimeter via improved MEEMD-HHT method [C] // Proceedings of 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference. Chengdu: IAEAC, 2019:1387-1391.
- [4] 李晗,萧德云.基于数据驱动的故障诊断方法综述
 [J].控制与决策, 2011, 26(1):1-9.
 LI Han, XIAO Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1):
 1-9. (in Chinese)
- [5] 文成林,吕菲亚,包哲静,等.基于数据驱动的微小故 障诊断方法综述[J].自动化学报,2016,42(9):1285-1299.

WEN Chenglin, LÜ Feiya, BAO Zhejing, et al. A review of data driven-based incipient fault diagnosis [J]. Acta Automatic Sinica, 2016, 42(9): 1285-1299. (in Chinese)

- [6] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
- [7] MAURYA S, SINGH V, VERMA N K, et al. Condition monitoring of machines using fused features from EMD based local energy with DNN [J]. IEEE Sensors Journal, 2019, 20: 8316-8327.
- [8] MANDIC D P, REHMAN N U, WU Z, et al. Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis [J]. IEEE Signal Processing Magazine, 2013, 30(6): 74-86.
- [9] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E, et al. Improved complete ensemble EMD: a suitable tool for biomedical signal processing [J]. Biomedical Signal Processing and Control, 2014, 14(14):19-29.
- [10] 郑近德,程军圣,杨宇.改进的EEMD算法及其应用 研究[J].振动与冲击,2013(21):21-26. ZHENG Jinde, CHENG Junsheng, YANG Yu. Modi-

fied EEMD algorithm and its applications[J]. Journal of Vibration and Shock, 2013(21):21-26. (in Chinese)

[11] 王凤利,邢辉,段树林,等.OEEMD 与 Teager 能量 算子结合的轴承故障诊断[J].振动、测试与诊断, 2018(1):87-91.

WANG Fengli, XING Hui, DUAN Shulin, et al. Fault diagnosis of bearing combining OEEMD with teager energy operator demodulation [J]. Journal of Vibration, Measurement & Diagnosis, 2018 (1):87-91. (in Chinese)

[12] 陈鹏,赵小强,朱奇先.基于多尺度排列熵和改进多 分类相关向量机的滚动轴承故障诊断方法[J].电子测 量与仪器学报,2020(2):20-28.

CHEN Peng, ZHAO Xiaoqiang, ZHU Qixian. Rolling bearing fault diagnosis method based on multi-scale permutation entropy and improved multi-class relevance vector machine [J]. Journal of Electronic Measurement and Instrumentation, 2020(2):20-28. (in Chinese)

- [13] HUANG N E. Review of empirical mode decomposition[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4391:71-80.
- [14] 郑旭,郝志勇,卢兆刚,等.基于MEEMD的内燃机机 体活塞敲击激励与燃烧爆发激励分离研究[J].振动与 冲击,2012,31(6):109-113.
 ZHENG Xu, HAO Zhiyong, LU Zhaogang, et al. Separation of piston-slap and combustion shock excitations via MEEMD method[J]. Journal of Vibration and
- [15] BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series [J]. Physical Review Letters, 2002, 88(17):1741021-1741024.

Shock, 2012, 31(6):109-113. (in Chinese)

- [16] LI Y, XU M, WANG R, et al. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy[J]. Journal of Sound and Vibration, 2016, 360: 277-299.
- [17] 张超,陈建军,郭迅.基于EEMD能量熵和支持向量 机的齿轮故障诊断方法[J].中南大学学报(自然科学 版),2010(3):216-220.
 ZHANG Chao, CHEN Jianjun, GUO Xun. Gear fault

diagnosis method based on ensemble empirical mode decomposition energy entropy and support vector machine [J]. Journal of Central South University (Science and Technology), 2010(3):216-220. (in Chinese)

- [18] BANDT C. A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure[J]. Entropy, 2017, 19(5):197-209.
- [19] 赵荣珍,李霁蒲,邓林峰.EWT多尺度排列熵与GG 聚类的轴承故障辨识方法[J].振动、测试与诊断, 2019,39(2):188-195.
 ZHAO Rongzhen, LI Jipu, DENG Linfeng. Method integrate EWT multi-scale permutation entropy with GG clustering for bearing fault diagnosis[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(2):188-195. (in Chinese)
- [20] XIE Z, YANG X, LI A, et al. Fault diagnosis in industrial chemical processes using optimal probabilistic neural network[J]. Canadian Journal of Chemical Engineering, 2019, 97(9):2453-2464.
- [21] SONG L, WANG H, CHEN P, et al. Automatic patrol and inspection method for machinery diagnosis robot - sound signal based fuzzy search approach[J]. IEEE Sensors Journal, 2020, 20(15):8276-8286.

第一者简介: 牟宗磊, 男, 1985年1月生, 博士、副教授、硕士生导师。主要研究方 向为重力精密测量技术、信号采集及信 号处理技术、状态监测与故障诊断技术 等。曾发表《分布式测试系统同步触发 脉冲传输时延的高精度测量方法》(《吉 林大学学报(工学版)》2018年第48卷第 4期)等论文。

E-mail:mzl@sdust.edu.cn

通信作者简介:张媛,女,1973年8月生, 博士、教授、博士生导师。主要研究方 向为智能感知与测试、绿色矿山智能输 送装备的机电液一体化技术等。 E-mail:zhangyuanzms@163.com