DOI:10.16450/j.cnki.issn.1004-6801.2023.01.005

考虑结构因素的蜂窝纸板等效模型适用性研究^{*}

杜赛娜^{1,2}, 郭彦峰¹, 王冬梅² (1.西安理工大学印刷包装与数字媒体学院 西安,710048) (2.深圳职业技术学院传播工程学院 深圳,518055)

摘要 为提高蜂窝纸板的数值计算精度、适用不同规格蜂窝纸板等效模型选择,分析了不同等效模型对不同结构蜂 窝纸板固有频率的对应等效精度。首先,对Reissner等效模型、Ekavall等效模型和三明治夹芯板模型分别进行有限 元建模;其次,将等效板的模态分析与实验结果进行对比,分析不同胞元边长、厚度与芯纸克重对等效模型的精度影 响;最后,总结这3个变量对不同模型计算精度的影响规律,在此基础上得到蜂窝纸板固有频率解析方程。结果表 明:Reissner理论模型适用于厚度小于等于20 mm的蜂窝纸板;Ekavall等效模型整体精度最高,误差基本低于 10%;三明治夹芯板模型在蜂窝纸板胞元边长为10 mm时精度最高;在胞元边长与厚度相同的情况下,芯纸克重对 计算精度影响较小;所得解析方程的解析结果与实验结果对比误差在12.43%以内。该结论为蜂窝纸板的模型选 取提供依据。

关键词 蜂窝纸板;等效模型;模态频率;结构因素 中图分类号 TB332;TB484.1

引 言

蜂窝纸板特殊的蜂窝结构使其重量轻、比刚度 和比强度较大,所以材料的利用率较高^[12]。由于蜂 窝结构复杂,影响动力学因素多样,因此在进行蜂窝 纸板的动静态力学计算时,学者们一直在寻找更简 便与贴切的等效模型。常用的等效模型主要分为3 类:蜂窝板理论模型、三明治夹芯板理论与等效板理 论模型^[35]。等效模型均有一定程度的假设。由于 假设不同,所以这些理论模型在不同的蜂窝纸板中 有着不同的等效优势,在计算耗时、精度和建模难度 等方面存在着较大差别。蜂窝夹层板的材料、结构 因素、使用环境和边界条件等都会影响等效模型的 计算精度^[68]。学者们对这些等效模型的等效精度 进行了对比。

张铁亮等^[9]对铝蜂窝夹层结构进行了3种等效 方法的静力分析和模态分析,发现三明治夹芯板理 论在铝蜂窝结构中等效最优。刘健等^[10]对不同长厚 比的铝蜂窝夹层板进行等效板模型固有频率验 证。Luo等^[11]对航天器中的蜂窝夹层板进行了模 型计算精度对比,结果表明,蜂窝板理论是简化航天 器结构的最适合方法。文献[12]研究了芯层长度与 蜂窝胞壁长度之比对铝蜂窝面内弹性参数的影响。 李贤冰^[13]发现三明治夹芯板理论的精度在铝蜂窝板 动力学等效分析中最高。

以上研究多是针对金属蜂窝夹层板的模型精 度,对纸蜂窝夹层结构没有等效模型的精度探讨。 研究纸蜂窝夹层结构参数对等效板模型计算精度的 影响规律,对纸蜂窝夹层结构动力学计算时的等效 模型选取有重大意义,对蜂窝纸板的制造和选用具 有指导意义。笔者首先归纳了3种常用的蜂窝等效 板模型:Reissner等效模型^[9,14]、Ekavall等效模型^[15-16] 和三明治夹芯板模型^[17],针对这3种模型分别进行 有限元建模;其次,将等效板的模态分析与实验结果 进行对比,分析不同胞元边长、厚度与芯纸克重对等 效模型的精度影响;最后,总结这3个变量对不同模 型计算精度的影响规律,在此基础上得到蜂窝纸板 固有频率解析方程,为蜂窝纸板的模型选取提供 依据。

1 蜂窝纸板振动模型建立

基于实验系统构建蜂窝纸板-质量系统的有限 元模型,振动模型由蜂窝板模型、质量块、振动台、盖 板与连接件5部分组成。盖板与振动台均为弹性材 料,几何参数分别为280 mm×240 mm×10 mm与

^{*} 深圳市科技计划资助项目(GJHZ20180928161004981);广东省教育厅科研团队配套资助项目(2020) 收稿日期:2020-12-30;修回日期:2021-05-17

320 mm×320 mm×20 mm; 材料参数:密度为 7 860 kg/m³;弹性模量为212 GPa; 泊松比为0.288; 质量块为三维离散刚体模型, 几何参数为200 mm× 200 mm×50 mm。设置其中心点为参考点, 参考点 在部件部分进行设定, 质量变化通过参考点赋予, 本 研究中取8 kg。

图1为蜂窝纸板几何参数。其中:正六边形芯 层上下面板厚度为*t*;芯层厚度为*h*;板的总厚度为 *H*。蜂窝芯格子的壁厚为δ,边长为*l*。50%湿度下 蜂窝原纸材料参数如表1所示。其中:*G*为原纸克 重;*T*为原纸厚度。

图1 蜂窝纸板几何参数

Fig.1 Geometric parameters of honeycomb sandwich plate

蜂窝纸板的有限元建模选择 Reissner 理论模型、Ekavall等效模型和三明治夹芯板模型,几何参数与材料参数的计算方式分别参考文献[9,15,17]。计算所需数据由表1给出,其中三明治夹芯板模型参数计算时的γ=1。建立模型时,Reissner 理论模型与Ekavall等效模型为弹性均质板,且为各向同性材料。三明治夹芯板模型为复合板,芯层与表层均为各向异性材料,表层与芯层间为绑定接触。

各部分建模完成后,将模型中所有接触均简化 设为绑定,4根螺栓连接简化为弹簧单元,刚度设为 1×10¹⁰。最后划分网格并计算各理论模型的前10阶 模态频率。图2为蜂窝纸板振动系统有限元模型。

2 结构因素对等效模型影响

以边长为200 mm,不同胞元边长(*l*分别为6, 8,10和12 mm)与厚度(*H*分别为10,20,30,40和

(a) 蜂窝纸板振动模型(a) Honeycomb cardboard vibration model

(b) 蜂窝纸板模态振型(b) Honeycomb cardboard modal shape图 2 蜂窝纸板振动系统有限元模型

Fig.2 Finite element model of honeycomb sandwich panels vibration system

50 mm)的蜂窝纸板作为研究对象。为方便记录, 试样编号为"芯纸克重-胞元边长-厚度"。例如,编 号110-6-10表示芯纸克重为110g/m²、胞元边长为 6 mm、厚度为10 mm的蜂窝板试样。采用正弦扫 频实验测试蜂窝纸板的模态频率。图3为蜂窝纸 板振动实验系统。实验采用苏州苏试试验仪器股 份有限公司制造的 DC-300-3 电子振动实验系统, 该实验模拟正弦振动下被蜂窝纸板包装的货物受 振动情况,振动台上的2个传感器用来记录输入振 动信号,质量块代表货物,本实验中其质量为8kg, 质量块上粘贴的传感器用于记录受蜂窝纸板减振 效果后的振动信号。扫频方式为对数扫频,扫频速 率为1 oct/min,扫频范围为5~1 000 Hz,目标谱加 速度峰值为0.5g。在扫频范围内,如果图像出现明 显峰值,则该处频率即为系统固有频率。在谐振搜 索与驻留-频响 (frequency response function, 简称 FRF)图像中,横轴为扫频频率,纵轴为加速度放大 倍数。实验开始前,在相对湿度为50%、温度为 23℃的条件下,利用CS/CP-KMH-1000R恒温恒湿 箱(科明科技有限公司制造)对试样预处理24h。 整个实验仪器处于开放性环境,为减少实验环境对

表1 50% 湿度下蜂窝原纸材料参数

Tab.1	Material	parameters	of	honeycomb	base	paper	at	50%	humidity	

项目	G/	T/	$\rho/$	$E_x/$	$E_y/$	$E_z/$	$G_{xy}/$	$G_{xz}/$	$G_{yz}/$.,	.,	.,
	$(g \cdot m^{-2})$	mm	$(kg \cdot m^{-3})$	MPa	MPa	MPa	MPa	MPa	MPa	μ_{xy}	μ_{xz}	μ_{yz}
面纸	230	0.32	718.75	7 762	1 642	38.81	1 382	141.1	46.92	0.135	0.01	0.01
芯纸	110	0.18	611.11	6 251	708.8	31.25	814.6	113.6	20.25	0.099	0.01	0.01
芯纸	140	0.22	636.36	7 340	964.7	36.70	1 0 3 0	133.5	27.56	0.106	0.01	0.01

试样影响,该实验在试样从恒温恒湿箱内取出 10 min内完成。

通过有限元计算软件 ABAQUS 对等效板进行 模态分析,并与实验结果进行对比,边界条件与实验 相同。计算不同结构参数蜂窝纸板的等效数值,分 析结构因素对等效模型精度的影响。

蜂窝纸板多用于缓冲包装,共振是导致产品破损的主要原因,主要起作用为z方向的振型。根据

图 3 蜂窝纸板振动实验系统 Fig.3 Vibration experiment system of honeycomb paperboard

筛选发现,起主导作用的为第6阶振型,将不同结构 参数蜂窝纸板的3种等效模型的第6阶固有频率与 实验数据进行对比。表2为实验结果与各理论模型 结果的对比。

将3种等效板模型模态频率计算结果与实验结 果进行对比,得到不同结构因素下的等效板模型模 态频率计算误差的绝对值。结构参数对等效板模型 模态频率误差的影响如图 4 所示。可见, Ekavall等 效模型与三明治夹芯板模型的误差率整体上要小于 Reissner理论模型,这主要是由于Reissner理论模型 简化时忽略了胞元边长对纸板性能的影响,导致只 要厚度相同的蜂窝板就会得出同样模型参数,同时 极大地忽略了芯纸作用,使芯纸克重对模态频率计 算结果的影响几乎没有。就模型本身而言,厚度越 小,精度越高,当厚度大于30mm之后,误差率几乎 都在30%之上,且在同样厚度与胞元边长的情况 下,芯纸克重较大的精确度更高。这是由于该理论 模型弹性模量和泊松比主要受面纸参数影响,厚度 小与克重大都能在一定程度上减少芯纸对蜂窝纸板 减振能力的影响。Ekavall等效模型与三明治夹层

表 2	实验结果与各理论模型结果对比	

Tab.2	The	experimental	results	are	compared	with	the	theoretical	models

	Reissner 역	序效模型	Ekavall等刻	汝模型	三明治夹芯	实验结果/	
试件骗亏	固有频率/Hz	误差/%	固有频率/Hz	误差/%	固有频率/Hz	误差/%	Hz
140-6-10	510.09	-3.08	540.84	2.76	587.33	11.60	526.29
140-6-20	400.12	-14.58	494.99	5.67	440.02	-6.07	468.42
140-6-30	220.07	-49.36	407.39	-6.25	361.45	-16.82	434.55
140-6-40	163.04	-56.42	357.37	-4.47	310.97	-16.88	374.10
140-6-50	128.39	-54.12	332.30	18.74	275.03	-1.73	279.86
140-8-20	400.12	-10.27	432.05	-3.13	395.90	-11.22	445.94
140-8-40	163.04	-51.90	319.10	-5.85	278.03	-17.97	338.94
140-10-10	510.09	-0.02	501.32	-1.74	500.46	-1.91	510.19
140-10-20	400.12	0.03	388.61	-2.85	362.90	-9.28	400.01
140-10-30	220.07	-37.15	322.70	-7.84	295.82	-15.51	350.14
140-10-40	163.04	-47.06	298.35	-3.13	254.19	-17.47	307.99
140-10-50	128.39	-57.45	289.98	-3.90	225.02	-25.43	301.74
140-12-20	400.12	18.35	356.53	5.46	337.42	-0.19	338.07
140-12-40	163.04	-46.30	284.38	-6.33	236.17	-22.21	303.59
110-6-20	400.14	-10.97	413.90	-7.90	373.92	-16.80	449.42
110-8-20	400.14	16.54	361.25	5.21	332.00	-3.31	343.36
110-10-10	510.09	6.39	456.97	-4.69	433.93	-9.50	479.46
110-10-20	400.14	11.23	325.02	-9.65	302.15	-16.01	359.73
110-10-30	220.08	-29.64	283.08	-9.50	246.29	-21.27	312.81
110-10-40	163.05	-41.74	270.65	-3.29	216.32	-22.70	279.86
110-10-50	128.39	-48.26	247.85	-0.12	209.40	-15.61	248.14
110-12-20	400.14	34.71	300.49	1.16	280.83	-5.45	297.03

模量来计算等效结构的弹性模量。拥有较小胞元边

长的蜂窝纸板芯层弹性会变差,而厚度增加会削弱

这一特征,使等效结果变差;胞元边长更大时,芯层

弹性减小,此时厚度更大反而能增强这一特征。三

明治夹芯板模型在芯纸为140g/m²的模型中误差率

大多在10%~20%,相比之下芯纸克重较小的误差

率更小。在厚度不大于20mm的蜂窝纸板中,该模

型表现出了最小的整体误差率,误差率均在11.6%

以下,在此基础上,胞元边长的增大会让厚度大于

20 mm 纸板的误差率更大。

板等效模型均为等厚度模型,且胞元边长、纸板厚度 与面值和芯纸材料参数均会影响2种模型的等效板 数值,但由于蜂窝纸板减振能力主要由芯层垂直方 向提供,三明治夹芯板模型虽然等效为夹层板与各 项异性材料,等效精度却没有随着等效过程的复杂 性而增加。对比来看,Ekavall等效模型整体误差率 最大不超过18.74%,在3种等效模型中可以看作最 优,此模型在胞元边长较小时,50 mm的厚板误差率 更大,但当胞元边长增大时,厚板误差会减小。这是 因为该模型的核心是依据构成实体结构材料的弹性

Fig.4 Influence of structural parameters on modal frequency error of equivalent plate model

3 固有频率解析方程

在蜂窝纸板实际应用中,强迫振动一般由支撑 件的运动引起,此时系统的单自由度振动模型如图5 所示。图中:X_x为支座位移;x为质量块位移;m为 质量块的质量。由于振动带来的变形极其微小,所 以蜂窝纸板在振动过程中仅发生弹性形变。

振动系统的固有频率为

图 5 单自由度振动模型 Fig 5 Single degree of freedom vibration model

$$\omega_n = \sqrt{\frac{k}{m}} \tag{1}$$

其中:k为刚度系数。

由于蜂窝纸板在此过程中为弹性形变,所以刚 度系数可表示为

$$k = \lambda \frac{EA}{H} \tag{2}$$

其中:E为蜂窝纸板轴向弹性模量;A为面积;H为 蜂窝纸板厚度。

由于式(2)为基础公式,引入针对蜂窝纸板的 修正因子λ。根据等效模型误差率对比结果,发现 等厚度等效模型Ekavall等效模型更加贴合。弹性 模量可表示为

$$E = \frac{E_f^2 E_{\alpha} H}{2E_f E_{\alpha} t + E_f^2 h}$$
(3)

$$E_{cz} = \frac{2}{\sqrt{3}} \frac{\delta}{l} E_c \tag{4}$$

将式(3)、式(2)代入式(1),得到蜂窝纸板-质量 块系统固有频率解析方程为

$$f_n = \frac{\omega_n}{2\pi} = 0.159\lambda \sqrt{\frac{2\delta E_f^2 E_c A}{4\delta m E_f E_c t + \sqrt{3} m l E_f^2 h}}$$
(5)

表 3 为不同结构参数蜂窝纸板修正因子,发现λ 集中在 0.514~0.654,取平均数 λ=0.59并代入 式(5),得到最终固有频率解析方程为

$$f_n = \frac{\omega_n}{2\pi} = 0.094 \sqrt{\frac{2\delta E_f^2 E_c A}{4\delta m E_f E_c t + \sqrt{3} m l E_f^2 h}} \quad (6)$$

选取芯纸克重为110 g/m²的不同规格蜂窝纸板,用实验结果验证该解析方程的可靠性。表4为 固有频率解析结果误差率。可以发现,误差率小于 12.43%,此解析式可行。此外,在较厚的蜂窝纸板 中,解析式的误差率会更大,这是由于厚度增加,固 有频率会随之降低,相同的差值在更低的固有频率 中会体现出更大的误差率。

wich panels	with different structural	parameters
试样编号	固有频率/Hz	λ
140-6-20	494.99	0.565
140-6-30	407.39	0.573
140-6-40	357.37	0.581
140-6-50	332.30	0.605
140-8-20	432.05	0.569
140-8-40	319.10	0.599
140-10-10	501.32	0.514
140-10-20	388.61	0.573
140-10-30	322.70	0.585
140-10-40	298.35	0.627
140-12-20	356.53	0.575
140-12-40	284.38	0.654

表3 不同结构参数蜂窝纸板修正因子

Tab.3 Correction factors of paper honeycomb sand-

表 4 固有频率解析结果误差率 Tab.4 Error rate of natural frequency analysis results

讨样馆早	实验结果/	解析结果/	误差率/%	
风作细与	Hz	Hz		
110-6-20	449.42	435.38	-3.12	
110-8-20	343.36	377.09	9.82	
110-10-10	479.46	484.97	1.15	
110-10-20	359.73	337.30	-6.23	
110-10-30	312.81	273.92	-12.43	
110-10-40	279.86	246.59	-11.89	
110-10-50	248.14	221.28	-10.82	
110-12-20	297.03	307.93	3.67	

4 结 论

 Reissner 理论模型仅在蜂窝纸板厚度较小 (H≤20)时误差率较低,误差率在10%以下;其余 情况下其误差率大于30%,甚至达到50%,此时该 模型不可使用。

2) Ekavall等效模型在3种模型中误差率最低, 但当胞元边长较小(*l*=6 mm)时,50 mm厚度的板 误差率较大,且随着胞元边长增大,厚板的误差率在 减小。三明治夹芯板模型整体误差率大都小于 20%,且在蜂窝纸板厚度较小时(H≪20)误差率较 低,仅在胞元边长较大时(*l*≥10 mm),厚度大于 40 mm的板中会出现大于20%的误差率。

3) 芯纸克重对模型精度影响相比于胞元边长 和厚度较小,且难以找出一致规律。整体上,Reissner 理论模型与三明治夹芯板模型在芯纸克重为 140 g/m²时精度更高,Ekavall等效模型则相反。 4)蜂窝纸板固有频率解析方程的误差率在
 12.43%之内。

参考文献

- LIANG N, WANG D M, GUO Y F, et al. Research progress on vibration transmissibility of honeycomb paperboard [J]. Packaging Journal, 2018, 10 (4): 43-49.
- [2] WANG D M, BAI Z Y, LIAO Q H. 3D energy absorption diagram construction of paper honey-comb sandwich panel [J]. Shock and Vibration, 2018, 2018: 1-6.
- [3] IRENEUSZ K. A literature review on computational models for laminated composite and sandwich panels
 [J]. Central European Journal of Engineering, 2011, 1(1): 59-80.
- [4] 胡玉琴. 铝蜂窝夹层板等效模型研究及数值分析[D]. 南京:南京航空航天大学, 2008.
- [5] 苏玲,刘赛,尹进,等.蜂窝夹层板强度分析模型对比研究[J]. 宇航总体技术, 2019, 3(5): 23-27.
 SU Ling, LIU Sai, YIN Jin, et al. Comparison of strength analysis models for honeycomb core composites
 [J]. Astronautical Systems Engineering Technology, 2019, 3(5): 23-27. (in Chinese)
- [6] CAIL C, ZHANG D Y, ZHOU S H, et al. Investigation on mechanical properties and equivalent model of aluminum honey comb sandwich panels [J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6585-6596.
- [7] ZHAO X Q, WANG G, YU D L. Experiment verification of equivalent model for vibration analysis of honeycomb sandwich structure [J]. Applied Mechanics and Materials, 2014, 624: 280-284.
- [8] GUO N, CHEN H, ZHANG Z, et al. Comparative study of dynamically equivalent modeling methods for honeycomb sandwich structure: numerical simulations and experiments[J]. Mechanical Sciences, 2020, 11(2): 317-328.
- [9] 张铁亮,丁运亮,金海波.蜂窝夹层板结构等效模型比较分析[J].应用力学学报,2011,28(3):275-282,327.
 ZHANG Tieliang, DING Yunliang, JIN Haibo. Com-

parative analysis of equivalent models for honeycomb sandwich plates [J]. Chinese Journal of Applied Mechanics, 2011, 28(3): 275-282, 327. (in Chinese) [10] 刘健,周春燕.长厚比对正六边形铅蜂窝夹层板等效板 模型动力学计算精度的影响[J].复合材料学报, 2016,33(8):1838-1847.

LIU Jian, ZHOU Chunyan. Influence of length-thickness ratio on dynamics calculation accuracy of equivalent plate model of hexagonal aluminum honeycomb sandwich plate [J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1838-1847. (in Chinese)

- [11] LUO H, LIU G, MA S J, et al. Dynamic analysis of the spacecraft structure on orbit made up of honeycomb sandwich plates [J]. 2011 IEEE International Conference on Computer Science and Automation Engineering, 2011,1:83-87.
- [12] TATARNIK O V , KARPENKOV K S. Development of a computer simulation approach for honeycomb constructions for aerospace application[C]// IOP Conference Series: Materials Science and Engineering. St Asaph: IOP Publishing, 2015: 12-16.
- [13] 李贤冰.蜂窝夹层板结构的减振设计[D].长沙:国防 科学技术大学,2012.
- [14] 夏利娟,金咸定,汪庠宝.卫星结构蜂窝夹层板的等效 计算[J].上海交通大学学报,2003,37(7):999-1001.
 XIA Lijuan, JIN Xianding, WANG Yangbao. Equivalent analysis of honeycomb sandwich plates for satellite structure [J]. Journal of Shanghai Jiao Tong University, 2003, 37(7):999-1001. (in Chinese)
- [15] 刘祥. 航空用可快拆蜂窝夹层舱门强度等效模型研究 [D]. 哈尔滨:哈尔滨工程大学, 2014.
- [16] 刘志慧.钢夹层板船体结构强度分析方法研究[D].哈 尔滨:哈尔滨工程大学,2010.
- [17] 张明明,吴宏伟,王帅,等. 蜂窝机翼结构计算与优化 设计[J]. 机械强度, 2017, 39(5): 1151-1157.
 ZHANG Mingming, WU Hongwei, WANG Shuai, et al. Simulation and optimization design of airfoil honeycombs structure [J]. Journal of Mechanical Strength, 2017, 39(5): 1151-1157. (in Chinese)

第一作者简介:杜赛娜,女,1997年9月 生,硕士。主要研究方向为蜂窝纸板振 动阻尼特性。 E-mail:1073598799@qq.com

通信作者简介:王冬梅,女,1976年10月 生,博士、教授。主要研究方向为包装运 输与材料。

E-mail:szybz202202@163.com