DOI:10.16450/j.cnki.issn.1004-6801.2023.03.023

城市轨道交通桥梁-列车-乘客动力相互作用*

王少钦¹, 郭薇薇², 曹明盛², 李宇杰³ (1.北京建筑大学理学院 北京,100044) (2.北京交通大学土木与建筑工程学院 北京,100044) (3.北京市地铁运营有限公司 北京,100044)

摘要 为确保城市轨道交通线路安全舒适运营,以北京地铁5号线上的三跨连续箱梁桥为背景,建立桥梁-车辆-乘 客动力相互作用分析模型,推导其动力平衡微分方程并编写相应计算程序,分别计算了桥梁、车辆及乘客的振动响 应,并对各响应极值的变化规律及列车运行平稳性进行分析,采用实测数据对计算结果进行验证。研究表明:所建 立的动力分析模型及计算程序具有较好的可靠性;该连续箱梁桥处于比较良好的工作状态;在现行车速条件下,车 辆的振动加速度、横向力、轮重减载率及脱轨系数等平稳性、安全性指标均在理想范围内;乘客与车辆的振动响应存 在明显差异,且具有一定的滞后性;位于车厢中部的乘客振动响应极值比位于车厢端部位置的偏小,中部车厢内的 乘客振动响应小于两端车厢内的乘客。

关键词 轨道交通;桥梁;车辆;乘客;振动 中图分类号 TU318;U441.3

引 言

城市轨道交通线路是大中城市的主要交通命脉, 乘车舒适性会受到振动、噪声、温度、车厢内气味及候 车时间等多种因素影响,其中车辆振动是一项重要影 响因素[1-3]。为了跨越地面障碍,满足线路平顺性要 求,城市轨道交通线路中修建了大量的高架线路,桥 梁结构的振动作为激励源进一步加剧了列车的振动。 Zakeri等^[4]建立了21个自由度的列车模型,研究了倾 斜度、行车速度、轨道质量及曲率半径等因素对曲线 桥上列车的加速度影响,并采用加速度均方根来评价 乘坐舒适性。王贵春等^[5]通过ANSYS里的APDL语 言建立了斜拉桥模型及车辆模型,通过ISO2631标准 分析了路面不平整度、车速及车重等因素对车辆竖 向、点头、摇头等方向加速度的影响。韩万水等^[6]以杭 州湾跨海大桥北航道桥为背景,建立了风-汽车-桥梁 系统空间耦合分析模型,并根据ISO2631标准中的1/ 3倍频带法对车辆驾驶舒适性进行了评价。Ma等^[7]通 过对比4种加速模型研究城市轨道交通列车的轴向振 动加速度变化,并配合问卷调查综合评价北京地铁亦 庄线的乘车舒适性。

在车辆运行过程中,乘客振动响应并不总是与车

辆保持一致,尤其是在车辆制动和起步时,将车辆的 振动响应作为乘车舒适度的评价依据不一定能准确 反映乘客自身的真实感受。因此,有学者开始尝试建 立车辆-乘客动力相互作用模型,以研究乘客自身的振 动响应。Wu等^[8]将乘客与座椅通过弹簧及阻尼进行 连接,建立了乘客-座椅-车辆的动力作用分析模型,比 较了车辆地板与座椅振动响应的区别、不同位置乘客 振动响应的差异以及车速变化对振动的影响,验证了 建立乘客模型的必要性。黄晓婷等^[9]分别建立了具有 4个和6个自由度的乘客模型及乘客-车辆耦合振动模 型,评价乘客舒适度,结果表明,考虑乘客后得到的舒 适度指标低于未加乘客时。谭灿枚等^[10]建立了6个自 由度的乘客-座椅模型,将乘客等效模型和弹性车体引 入车辆刚柔耦合动力学模型以评价车辆的乘坐舒适 性。刘习军等^[11]建立了人-车-桥耦合系统,分别研究 了轨道不平顺等级、车速、乘客数量及位置对乘车舒 适程度的影响,并采用人体总加权加速度均方根来评 价舒适性。方超[12]将人体简化为质量-弹簧-阻尼机械 系统,建立了人-车垂向和横向耦合模型,对舒适度进 行评价。上述文献考虑了乘客与车辆的动力相互作 用,更加真实地反映了乘客的振动响应,但大多研究 集中在车辆设计方面,对于桥梁基础设施的振动激励

^{*} 国家自然科学基金资助项目(51878036) 收稿日期:2022-01-10;修回日期:2022-03-18

作用考虑较少。

城市轨道交通由于运量大、安全快捷等优点在 大中城市迅猛发展,对于缓解交通拥堵起到了非常 重要的作用。北京城铁13号线高架线路占总里程 的92.6%,而房山线中的高架线路比重也达到了 86.5%。列车在桥梁上运行的时间和里程都较之前 有大幅增加。笔者选取北京地铁5号线高架桥线路 的典型连续箱梁桥为工程背景,考虑轨道不平顺及 轮对蛇行运动,根据乘客、车辆及桥梁间的动力相互 作用建立分析模型,编写通用计算程序对不同工况 下桥梁的位移、车辆的运行安全性及平稳性、乘客的 舒适性等进行模拟计算,研究城市轨道交通线路的 乘车安全性及舒适性。

1 桥梁-车辆-乘客耦合振动分析模型

车辆模型及其参数如图1所示,由车厢、前后转 向架、4个轮对及弹簧阻尼装置组成。其中:车厢及 转向架分别考虑横摆 Y、沉浮 Z、侧滚 θ、点头 φ 及摇 头 φ 这 5 个方向的自由度;轮对考虑横摆 Y、沉浮 Z、 侧滚 θ 共 3 个方向的自由度;下角标"c"表示车厢, "t1"表示前转向架,"t2"表示后转向架。因此,车辆 共计 27 个自由度^[1]。车厢编号 *i* 由列车编组决定, 对于城市轨道交通列车,*i*通常取1~6。

将多排乘客加入到车辆-桥梁相互作用分析模型,同时考虑轨道不平顺及轮对蛇行运动,组成桥梁-车辆-乘客耦合振动分析模型,如图2所示。

车厢内的乘客等效为N排。对于第*i*节车厢内的第*n*排乘客,其质量设为*m*_{bin}。假设每排乘客考虑

Fig.1 Vehicle model and corresponding parameters

图2 桥梁-车辆-乘客耦合振动分析模型

Fig.2 Coupling vibration model of bridge-train-passenger

6个方向的自由度,分别为横摆 Y_{in} 、沉浮 Z_{in} 、伸缩 X_{in} 、侧滚 θ_{in} 、点头 φ_{in} 及摇头 φ_{in} 。乘客模型通过弹 簧-阻尼装置与车厢进行连接^[12],在这6个自由度方 向所对应的刚度及阻尼系数分别为 k_{in}^{i} , c_{in}^{i} , k_{in}^{i} , c_{in}^{e} , k_{in}^{e} , c_{in}^{e} , k_{in}^{e} , c_{in}^{e} ,

考虑乘客与车辆的动力相互作用,由Lagrange 方程可以推导车辆各方向的运动平衡微分方程。

横向

$$M_{ci} \ddot{Y}_{ci} + \sum_{j=1}^{2} k_{2ij}^{v} (Y_{ci} - Y_{tij}) + \sum_{j=1}^{2} c_{2ij}^{v} (\dot{Y}_{ci} - \dot{Y}_{tij}) - \sum_{n=-N/2}^{N/2} k_{pin}^{z} [Y_{pin} - Y_{ci}] = 0$$
(1)

竖向

$$\begin{split} \mathbf{M}_{ci} \ddot{Z}_{ci} &+ \sum_{j=1}^{2} k_{2ij}^{v} (Z_{ci} - Z_{tij}) + \sum_{j=1}^{2} c_{2ij}^{v} (\dot{Z}_{ci} - \dot{Z}_{tij}) - \sum_{n=-N/2}^{N/2} k_{pin}^{z} [Z_{pin} - Z_{ci}] = 0 \end{split}$$
(2)

侧滚

$$\begin{split} J_{c\theta i}\ddot{\theta}_{ci} &- \sum_{j=1}^{2} h_{1i}k_{2ij}^{h}(Y_{ci} - Y_{ij} - h_{1i}\theta_{ci} - h_{2i}\theta_{ij}) - \\ &\sum_{j=1}^{2} h_{1i}c_{2ij}^{h}(\dot{Y}_{ci} - \dot{Y}_{ij} - h_{1i}\dot{\theta}_{ci} - h_{2i}\dot{\theta}_{ij}) + \\ &\sum_{j=1}^{2} b_{i}^{2} \left[k_{2ij}^{v}(\theta_{ci} - \theta_{ij}) + c_{2ij}^{v}(\dot{\theta}_{ci} - \dot{\theta}_{ij}) \right] + \\ &\sum_{n=-N/2}^{N/2} h_{0}k_{pin}^{y} \left[Y_{pin} + \theta_{ci}h_{0} - Y_{ci} \right] + \\ &\sum_{n=-N/2}^{N/2} h_{0}c_{pin}^{y} \left[\dot{Y}_{pin} + \dot{\theta}_{ci}h_{0} - \dot{Y}_{ci} \right] - \end{split}$$

摇头

$$\sum_{n=-N/2}^{N/2} k_{pin}^{\theta} [\theta_{pin} - \theta_{ci}] - \sum_{n=-N/2}^{N/2} c_{pin}^{\theta} [\dot{\theta}_{pin} - \dot{\theta}_{ci}] = 0$$
(3)

$$J_{c\varphi i} \ddot{\varphi}_{ci} + \sum_{j=1}^{2} k_{2ij}^{v} [s_{i}^{2} \varphi_{ci} - \eta_{ij} s_{i} Z_{uj}] + \\\sum_{j=1}^{2} c_{2ij}^{v} [s_{i}^{2} \dot{\varphi}_{ci} - \eta_{ij} s_{i} \dot{Z}_{uj}] - \\\sum_{n=-N/2}^{N/2} n w_{x} k_{pin}^{y} [Y_{pin} - \varphi_{ci} m w_{x}] - \\\sum_{n=-N/2}^{N/2} n w_{x} c_{pin}^{y} [\dot{Y}_{pin} - \dot{\varphi}_{ci} m w_{x}] - \\\sum_{n=-N/2}^{N/2} k_{pin}^{\varphi} [\varphi_{pin} - \varphi_{ci}] - \sum_{n=-N/2}^{N/2} c_{pin}^{\varphi} [\dot{\varphi}_{pin} - \dot{\varphi}_{ci}] = 0$$

$$(4)$$

点头

$$J_{c\phi i}\ddot{\psi}_{ci} + \sum_{j=1}^{2} k_{2ij}^{h} [s_{i}^{2}\psi_{ci} - \eta_{ij}s_{i}(Y_{uj} + h_{2i}\theta_{uj})] + \\\sum_{j=1}^{2} c_{2ij}^{h} [s_{i}^{2}\dot{\psi}_{ci} - \eta_{ij}s_{i}(\dot{Y}_{uj} + h_{2i}\dot{\theta}_{uj})] - \\\sum_{n=-N/2}^{N/2} h_{0}k_{pin}^{x} [X_{pin} - \psi_{ci}h_{0}] - \\\sum_{n=-N/2}^{N/2} h_{0}c_{pin}^{x} [\dot{X}_{pin} - \psi_{ci}h_{0}] + \\\sum_{n=-N/2}^{N/2} nw_{x}k_{pin}^{z} [Z_{pin} + \psi_{ci}nw_{x}] + \\\sum_{n=-N/2}^{N/2} nw_{x}c_{pin}^{z} [\dot{Z}_{pin} + \psi_{ci}nw_{x}] - \\\sum_{n=-N/2}^{N/2} k_{pin}^{\mu} [\psi_{pin} - \psi_{ci}] - \\\sum_{n=-N/2}^{N/2} c_{pin}^{\mu} [\psi_{pin} - \psi_{ci}] = 0$$
(5)

由 Lagrange 方程推导第 *i* 辆车内第 *n* 排乘客的运动平衡微分方程。

纵向

$$M_{\rm pin} \ddot{X}_{\rm pin} + k_{\rm pin}^{x} [X_{\rm pin} - \psi_{\rm ci} h_{\rm 0}] + c_{\rm pin}^{x} [\dot{X}_{\rm pin} - \dot{\psi}_{\rm ci} h_{\rm 0}] = 0$$
(6)

横向

$$M_{\text{pin}} \dot{Y}_{\text{pin}} + k_{\text{pin}}^{y} [Y_{\text{pin}} - \phi_{ci} m w_{x} + \theta_{ci} h_{0} - Y_{ci}] + c_{\text{pin}}^{y} [\dot{Y}_{\text{pin}} - \dot{\phi}_{ci} m w_{x} + \dot{\theta}_{ci} h_{0} - \dot{Y}_{ci}] = 0$$
(7)
$$! \underline{\xi} \hat{\mathbf{p}}$$

$$M_{\text{pin}} \ddot{Z}_{\text{pin}} + k_{\text{pin}}^{z} [Z_{\text{pin}} + \Psi_{\text{ci}} m w_{x} - Z_{\text{ci}}] + c_{\text{pin}}^{z} [\dot{Z}_{\text{pin}} + \dot{\Psi}_{\text{ci}} m w_{x} - \dot{Z}_{\text{ci}}] = 0$$

$$(8)$$

$$M \tilde{\chi}$$

$$J_{\mathrm{p}\theta n}\ddot{\theta}_{\mathrm{p}in} + k_{\mathrm{p}in}^{\theta} \left[\theta_{\mathrm{p}in} - \theta_{\mathrm{c}i} \right] + c_{\mathrm{p}in}^{\theta} \left[\dot{\theta}_{\mathrm{p}in} - \dot{\theta}_{\mathrm{c}i} \right] = 0 \qquad (9)$$

摇头

$$J_{p\phi n}\ddot{\varphi}_{pin} + k^{\phi}_{pin} [\varphi_{pin} - \varphi_{ci}] + c^{\phi}_{pin} [\dot{\varphi}_{pin} - \dot{\varphi}_{ci}] = 0 \quad (10)$$

点头

$$J_{\mathsf{p}\varphi\mathsf{n}}\ddot{\varphi}_{\mathsf{p}\mathsf{i}\mathsf{n}} + k_{\mathsf{p}\mathsf{i}\mathsf{n}}^{\varphi} [\varphi_{\mathsf{p}\mathsf{i}\mathsf{n}} - \varphi_{\mathsf{c}\mathsf{i}}] + c_{\mathsf{p}\mathsf{i}\mathsf{n}}^{\varphi} [\dot{\varphi}_{\mathsf{p}\mathsf{i}\mathsf{n}} - \dot{\varphi}_{\mathsf{c}\mathsf{i}}] = 0 \quad (11)$$

将式(1)~(11)进行推导并整理,可得到第*i*节 车辆及车厢内乘客的运动平衡微分方程为

$$\begin{bmatrix} M_{ppi} & 0 \\ 0 & M_{VVi} \end{bmatrix} \begin{Bmatrix} \ddot{R}_{pi} \\ \ddot{R}_{Vi} \end{Bmatrix} + \begin{bmatrix} C_{ppi} & C_{pVi} \\ C_{Vpi} & C_{VVi} \end{bmatrix} \begin{Bmatrix} \dot{R}_{pi} \\ \dot{R}_{Vi} \end{Bmatrix} + \begin{bmatrix} K_{ppi} & K_{pVi} \\ K_{Vpi} & K_{VVi} \end{Bmatrix} \begin{Bmatrix} R_{pi} \\ R_{Vi} \end{Bmatrix} = \begin{Bmatrix} 0 \\ F_{VV} \end{Bmatrix}$$
(12)

其中:*M*为质量矩阵;*C*为阻尼矩阵;*K*为刚度矩阵; *R*为位移向量;*F*为作用在车辆上的外力;下标p,V 分别表示乘客和车辆。

系统的位移向量可表示为

$$R_{i} = \begin{bmatrix} R_{pil} & R_{pi2} & \cdots & R_{piN} & R_{ci} & R_{tli} & R_{t2i} \end{bmatrix}^{1}$$
(13)
第 n 排乘客的位移向量可表示为

$$R_{pin} = \begin{bmatrix} X_{pin} & Y_{pin} & Z_{pin} & \theta_{pin} & \varphi_{pin} & \psi_{pin} \end{bmatrix}^{T}$$
(14)
车厢的位移向量为

$$\boldsymbol{R}_{ci} = \begin{bmatrix} Y_{ci} & \theta_{ci} & \psi_{ci} & Z_{ci} & \varphi_{ci} \end{bmatrix}^{1}$$
(15)

前后转向架的位移向量与车厢一致,将下角标由c改为t1,t2即可。

系统的质量矩阵可表示为

$$M_i = \text{diag} \{ M_{\text{pil}} \ M_{\text{pi2}} \ \cdots \ M_{\text{piN}} \ M_{\text{ci}} \ M_{\text{tl}i} \ M_{\text{tl}i} \}$$

(16)

第n排乘客的质量矩阵为

 $M_{pin} = \text{diag} \{ m_{pin}, m_{pin}, m_{pin}, J_{pi\thetan}, J_{pi\phin}, J_{pi\phin} \}$ (17) 其中: m_{pin} 为第*i*节车厢上第*n*排乘客的总质量;*J*为乘客在相应位移方向的转动惯量。

每节车辆及乘客的阻尼矩阵可表示为

$$C_{i} = \begin{bmatrix} C_{\text{pl}i} & 0 & \cdots & C_{\text{cpl}i} & 0 & 0 \\ 0 & C_{\text{p2}i} & \cdots & C_{\text{cp2}i} & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ C_{\text{plc}i} & C_{\text{p2c}i} & \cdots & C_{\text{cc}i} & C_{\text{t},\text{ci}} & C_{\text{t}_{2}\text{ci}} \\ 0 & 0 & 0 & C_{\text{ct}_{1}i} & C_{\text{t}_{1}i} & 0 \\ 0 & 0 & 0 & C_{\text{ct}_{2}i} & 0 & C_{t_{2}i} \end{bmatrix}$$
(18)

第 n 排乘客的阻尼矩阵可表达为

$$C_{\text{pni}} = \text{diag} \left\{ c_{\text{in}}^{x}, c_{\text{in}}^{y}, c_{\text{in}}^{z}, c_{\text{in}}^{\theta}, c_{\text{in}}^{\varphi}, c_{\text{in}}^{\psi} \right\}$$
(19)

$$C_{\text{pnci}} = \begin{bmatrix} 0 & -c_{in}^{y} & 0 & 0 & 0 & 0 \\ 0 & h_{0}c_{in}^{y} & 0 & -c_{in}^{\theta} & 0 & 0 \\ -h_{0}c_{in}^{x} & 0 & nw_{x}c_{in}^{z} & 0 & 0 & -c_{in}^{\psi} \\ 0 & 0 & -c_{in}^{z} & 0 & 0 & 0 \\ 0 & -nw_{x}c_{in}^{y} & 0 & 0 & -c_{in}^{\varphi} & 0 \end{bmatrix}$$

$$(20)$$

其中:h₀为车辆质心与乘客质心的高差。

式(18)中, $C_{cpni} = C_{psi}^{T}$, 其余车厢及转向架部分的阻尼矩阵表达式可参考文献[1]。

系统刚度矩阵的表达式只需将阻尼矩阵中的阻 尼系数*c*换为刚度系数*k*,其他参数均一致。

桥梁结构的动力平衡微分方程可以表示为

(22)

其中:x_ψ为第*i*节车厢第*j*转向架下的第*l*轮对所在的位置;Y,θ,Z为横向、转角及竖向位移;下标b,w,s和h分别表示桥梁、轮对、轨道不平顺和轮对蛇行运动。

对于式(12)和式(21)所示的系统动力平衡微 分方程,可通过 Newmark-β算法进行积分迭代求 解,桥梁-车辆-乘客振动响应计算流程如图3所示, 采用 Fortran 语言编写相应计算程序。

Fig.3 Calculating process of the bridge-vehicle-passengers dynamic responses

2 计算实例

北京地铁5号线是南北方向的主干线,其高架 线路占比达到了38.8%。随着运营年限的增加,受 车辆荷载反复作用及环境因素的影响,结构逐渐产 生细微变化。选取其典型桥梁段进行动力响应计 算,并与实测数据进行对比验证。

图4所示为惠新西街北口站一大屯路东站的三 跨连续箱梁桥,全长为90m,跨度布置为3m× 30m,主梁为预应力混凝土连续箱梁,梁体顶板宽 为8.6m,底板宽为3.6m,腹板宽由支点处0.95m 向跨中处0.65m过渡,箱梁高为1.7m。

建立连续箱梁桥的有限元模型,通过模态分析 可知其前10阶自振频率在3.55~20.33 Hz范围内变 化,其部分振型如图5所示。

5号线运营车辆为标准B1型车,采用6节车厢编 组而成,车辆计算参数见表1。在运营过程中实际速 度最快为80 km/h,平均速度约为40 km/h。本研究 采用美国五级谱转换的时域不平顺样本作为系统 激励。

为简化计算,将图2中第*i*节车厢内的第*n*排乘 客与车厢连接的弹簧刚度及阻尼系数取值均保持一 致。每节车厢内考虑10排乘客,每排乘客质量取 0.28 t,乘客主要技术参数^[13-14]如表2所示。

2.1 桥梁振动响应

经观测,列车经过该桥时速度约为71 km/h,实 测所得桥梁左边跨跨中挠度时程曲线如图6所示。 由图可以看出,桥梁挠度时程曲线变化趋势与实际 情况相符,能够准确反映列车上桥前、在桥上运行期 间、过桥后桥梁的振动情况以及列车的动力加载作 用。计算结果与实测数据吻合度较高,位移极值也 比较接近,验证了计算模型的可靠性。

为研究车速变化对桥梁位移的影响,当列车以

图6 桥梁左边跨跨中挠度时程曲线

不同运行速度行驶通过连续箱梁桥时,绘制其左边 跨及中跨的跨中竖向及横向位移时程曲线,如图7 所示。由图可以看出,桥梁的竖向位移主要受列车 的自重控制,时程曲线能够准确反映列车的重力加 载作用,随着车速的增加振幅稍微加剧,但其幅值变 化并不明显,符合实际情况。随着车速的增加,桥梁 横向位移振幅会有明显增加,但由于桥梁横向刚度 很大,因此其横向位移数值很小。

Tab.1 Calculation parameters of the train						
车辆参数	数值	车辆参数	数值			
车辆全长/m	19	一系竖向阻尼系数/(($kN \cdot s$)·m ⁻¹)	5			
车辆定距/m	12.6	一系横向阻尼系数/(($kN \cdot s$)·m ⁻¹)	15			
固定轴距/m	2.3	二系竖向阻尼系数/(($kN \cdot s$)·m ⁻¹)	30			
轨距/m	1.435	二系横向阻尼系数/(($kN \cdot s$)·m ⁻¹)	30			
车体质量/t	44.3	车体侧滚转动惯量/(t•m²)	14.89			
转向架质量/t	2.55	车体点头转动惯量/(t•m²)	617.31			
轮对质量/t	1.42	车体摇头转动惯量/(t•m²)	617.31			
一系竖向弹簧刚度/(kN•m ⁻¹)	1 700	转向架侧滚转动惯量/(t•m²)	1.05			
一系横向弹簧刚度/(kN•m ⁻¹)	1 040	转向架点头转动惯量/(t•m²)	1.75			
二系竖向弹簧刚度/(kN•m ⁻¹)	275	转向架摇头转动惯量/(t•m²)	1.98			
二系横向弹簧刚度/(kN•m ⁻¹)	300	轮对侧滚转动惯量/(t•m²)	0.985			

表1 车辆计算参数 ab.1 Calculation parameters of the trai

表 2 乘客主要技术参数 Tab.2 Main parameters of passengers

阻尼系数/((kN•s)•m ⁻¹)				弹簧刚度/(kN•m ⁻¹)							
c^x	C ^y	c^{z}	c^{φ}	C ^θ	C ^ψ	k^x	k^{v}	k^{z}	k^{φ}	$k^{\scriptscriptstyle heta}$	k^{ψ}
0.393	0.749	2.384	3.0	3.0	3.0	0.970	1.041	39.163	34	13	50

当列车以不同速度运行时,桥梁的位移极值随 车速变化趋势如图8所示。由图可以看出:桥梁的 竖向位移极值在车速为70 km/h时呈现明显的波 谷;横向位移受车速影响较大,但是数值均相对较 小。因此,列车的运营速度取70 km/h比较合理。

2.2 车辆振动响应

车辆振动的加速度是评价列车运行平稳性的重要指标。当列车以70 km/h的速度匀速行驶通过连续箱梁桥时,其部分车厢的位移及加速度时程曲线

Fig.8 Maximum values of the continuous bridge with train speed

桥梁位移极值随车速变化趋势

图 8

如图 9 所示。由图可以看出:第4节车厢相对于第3 节车厢有明显的滞后现象,与车辆运行过程中的实际情况相符;第3,4节车厢振动响应时程曲线基本 相似,极值略有差异。

为更清楚地研究列车的运行平稳性,将第1~6 节车厢的轮重减载率、脱轨系数及横向力时程曲线 截取典型部分,各车厢运行平稳性时程曲线如图10 Fig.9 Displacement and acceleration time histories of the train

所示。由图可以看出:列车在桥上运行过程中,其 轮重减载率、脱轨系数及横向力的时程曲线数值均 在比较理想的范围内变化;由于每节车厢长度为 19m,因此第2~6节车厢上桥的时间应为0.98~ 5.88s。行车指标显示,第1~6节车厢相继上桥、出 桥的时间间隔及其对应的振动响应变化情况与实际 相符,由此也验证了计算数据的合理性。

Fig.10 Running safety time histories of the train

为比较不同车厢振动响应极值的差异,绘制第 1~6节车厢的各运行指标极值随车速的变化趋势, 如图11所示。由图可以看出:列车的横向和竖向加 速度极值、横向力、轮重减载率及脱轨系数均随着车速的增加呈增大趋势;当列车运行速度在60~ 120 km/h区间范围内变化时,车厢竖向加速度极值 为9.0 cm/s²,横向加速度极值为14 cm/s²,轮重减载 率极值为0.018,脱轨系数极值为0.18,轮对横向力 极值为2.7 kN,均在比较理想的范围内,各项安全指 标均满足规范规定的限值要求;位于中部的第3,4 节车厢的各项振动响应极值明显小于位于两端的第 1,6节车厢。

Fig.11 Maximum running indexes with train speed

2.3 乘客振动响应

为了比较车辆与乘客振动响应的差异,绘制第 4节车厢内第1排乘客与车厢的加速度时程曲线,其 对比结果如图12所示。由图可知,乘客的横向振动 加速度振幅明显大于车厢,而其竖向振动加速度振 幅却比所在车厢偏小。此外,乘客在两个方向的振 动加速度较车厢均有一定的滞后,与实际情况相符。

由于图2中车厢内乘客位置沿着车辆中轴线对

称,故认为第6~10排乘客的振动响应与第1~5排对称,从而减少图中的曲线数量,以便更明显地分辨其变化规律。为比较车厢内不同位置处乘客的振动响应差异,当列车以70km/h的速度运行时,第4节车厢内第1~5排乘客的加速度时程曲线如图13所示。由图可以看出:整个车厢内乘客横向振动加速度时程曲线基本保持一致;第1排乘客由于处于车厢的端部,其竖向加速度振动幅值比处于中间位置的乘客偏大;位于车厢中部的第5排乘客的振动幅值最小。

不同车厢间、同一车厢内不同位置处乘客的振动响应均有明显差异,因此当列车以70 km/h的速度行驶时,第1~6节车厢内不同位置处乘客的振动加速度极值如图14所示。由图可以看出:无论是横向还是竖向加速度,位于车头与车尾的第1,6节车厢内乘客的振动响应明显大于位于中部的第3,4节车厢内的乘客,说明位于中部车厢内的乘客舒适性明显优于两端车厢;对于同一节车厢,位于车厢中部的第5排乘客的振动响应明显小于列车端部位置的第1排乘客,因此同一车厢内位于中部的乘客乘车舒适性会更好。

2.4 乘车舒适性评价

综合不同方向加权加速度均方根值对舒适度进 行评价,其等级评价标准^[15]如表3所示。

乘客或车辆的单轴向加权加速度均方根值为

$$a_{Wi} = \sqrt{\left[\int_{0.5}^{80} \omega_i^2(f) G_{ai}(f) dt\right]}$$
(23)

其中: $G_{ai}(f)$ 为等宽带的加速度自功率谱密度函数; $\omega_i^2(f)$ 为频率加权函数。

综合不同方向加权加速度的均方根值为

	表 3	振动舒适度	等约	及评价标准	
Tab.3	The	classification	of	vibration	comfort

振动加速度值	舒适性评价
< 0.315	非常舒适
0.315~0.63	舒适
0.5~1.0	还算舒适
0.8~1.6	不舒适
$1.25 \sim 2.5$	非常不舒适
>2	极不舒适

$$a_{w} = \sqrt{(1.4a_{wx})^{2} + (1.4a_{wy})^{2} + a_{wz}^{2}}$$
 (24)

计算车速分别取40,60,80 km/h时车辆与乘客的加权加速度均方根值,并依据ISO 2631-1标准对照表3对车辆及乘客的振动舒适度等级进行评价,结果如表4所示。由于缺少车辆x方向的振动加速度值,采用乘客的值进行代替,因该方向的数量级比y,z方向小很多,因此不会影响评价结果。

表4 乘车舒适性评价结果 Tab.4 Comparison of evaluation results

v/ (km•h ⁻¹)	类别	$a_{\mathrm{w}x}$	a_{wy}	$a_{\mathrm{w}z}$	a_w	对应等级
40	乘客	0.008	0.191	0.093	0.283	舒适
	车辆	0.008	0.181	0.102	0.273	舒适
60	乘客	0.012	0.469	0.070	0.661	较舒适
	车辆	0.012	0.361	0.315	0.596	较舒适
80	乘客	0.024	0.489	0.366	0.778	较舒适
	车辆	0.024	0.452	0.432	0.767	较舒适

由表4可知,在目前所计算的车速下依据乘客 及车辆的振动响应得到的评价等级相同,但乘客及 车辆的加权加速度均方根值存在明显差异。因此, 有必要将乘客引入车桥耦合振动系统,计算其振动 响应,以作为评价舒适性的主要依据。

3 结 论

 1) 实测连续梁桥的位移变化趋势与计算结果 基本保持一致,所编写的乘客-车辆-桥梁耦合振动 分析程序能够快速准确地计算不同工况下桥梁、车 辆及乘客的振动响应,说明所建立分析模型及计算 程序均具有较好的可靠性。

 2)当前车速下连续箱梁桥的动力响应及车辆 的行车安全性、平稳性指标均在比较合理的范围内, 说明桥梁及车辆均处于比较理想的工作状态。

3) 乘客的振动响应变化趋势与车厢保持一致,

但具有一定的滞后性,且振动幅值存在明显差异。 处于车厢端部位置的乘客比处于中部位置的乘客振 动响应偏大,车厢中部的乘车舒适性更好。

参考文献

[1] 严战友,赵晓林,赵国叶,等.车-路弱耦合振动作用下沥青路面动态响应[J].振动、测试与诊断,2021,41(4):681-687.

YAN Zhanyou, ZHAO Xiaolin, ZHAO Guoye, et al. Dynamic response of asphalt pavement under vehicle-road weak couping vibration state[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(4): 681-687. (in Chinese)

- [2] DENG C X, ZHOU J S, THOPMPSON D, et al. Analysis of the consistency of the sperling index for rail vehicles based on different algorithms[J]. Vehicle System Dynamics, 2021, 59(2):313-330.
- [3] 张经纬,刘学文,王岩松,等.考虑轮轨接触损失的列 车成员舒适性分析[J].振动与冲击,2019,38(16): 181-187.

ZHANG Jingwei, LIU Xuewen, WANG Yansong, et al. Riding comfort of trains with rail irregularities considering contact loss of wheel-rail[J]. Journal of Vibration and Shock, 2019, 38(16) :181-187. (in Chinese)

- [4] ZAKERI J A, FEIZI M M, SHADFAR M, et al. Sensitivity analysis on dynamic response of railway vehicle and ride index over curved bridges[J]. Journal of Multi-body Dynamics, 2017, 231(1):266-277.
- [5] 王贵春,李武生.基于车桥耦合振动的车辆舒适性分析[J].振动与冲击,2016,35(8):224-230.
 WANG Guichun, LI Wusheng. Analysis on the vehicle ride comfort based on vehicle-bridge coupled vibration
 [J]. Journal of Vibration and Shock, 2016, 35(8): 224-230. (in Chinese)
- [6] 韩万水,陈艾荣.侧风与桥梁振动对车辆行驶舒适性 影响研究[J].土木工程学报,2008(4):55-60.
 HAN Wanshui, CHEN Airong. Study on the influence of crosswind and bridge vibration on vehicle ride comfort [J].Journal of Civil Engineering, 2008 (4):55-60. (in Chinese)
- [7] MA H R, CHEN D W, YIN J T. Riding comfort rail transit-mathematical models and experiments in beijing subway[J]. Sustainability, 2020, 12:4541.
- [8] WU J, QIU Y. Analysis of ride comfort of high-speed train based on a train-seat-human model in the vertical direction[J]. International Journal of Vehicle Mechanics

and Mobility, 2021, 59(12):1867-1893.

- [9] 黄晓婷,阳光武,吴仲刘.铁道客车乘客模型仿真与 舒适度分析[J].机车电传动,2015(1):29-33.
 HUANG Xiaoting, YANG Guangwu, WU Zhongliu.
 Passenger model simulation and comfort analysis of railway bus [J]. Locomotive Electric Drive, 2015 (1): 29-33. (in Chinese)
- [10] 谭灿枚, 宁新军, 吴仲刘. 铁道动车乘客等效模型及 其舒适度分析[J]. 铁道机车与动车, 2014(12): 17-19,32.
 TAN Canmei, NING Xinjun, WU Zhongliu. Passenger equivalent model and comfort analysis of railway motor vehicles [J]. Railway Locomotives and Motor Vehicles, 2014(12): 17-19,32.(in Chinese)
- [11] 刘习军,张西强,张素侠.人-车-桥耦合系统振动分析 及乘客舒适度评价[J]. 机械科学与技术, 2014, 33(9):1387-1392.
 LIU Xijun, ZHANG Xiqiang, ZHANG Suxia. Vibration analysis and passenger comfort evaluation of man-vehicle-bridge coupling system[J]. Mechanical Science and Technology, 2014, 33 (9):1387-1392. (in Chinese)
- [12] 方超.高速列车旅客人体振动模型建立及响应分析 [D].成都:西南交通大学,2015.
- [13] 王英杰,时瑾,龙许友,等. 高速铁路人车系统动力响 应及乘客舒适性评价[J]. 中南大学学报(自然科学 版),2013,44(7): 3046-3052.
 WANG Yingjie, SHI Jin, LONG Xuyou, et al. Dynamic responses of high speed railway human body-vehicle system and comfort evaluation [J]. Journal of Central South University (Science and Technology), 2013, 44(7): 3046-3052. (in Chinese)
- [14] NAGAI M, YOSHIDA H, TOHTAKE T, et al. Coupled vibration of passenger and lightweight car-body in consideration of human-body biomechanics [J]. Vehicle System Dynamics, 2006, 44(S): 601-611.
- [15] ISO 2631-1—1997 Mechanical vibration and shock evaluation of human exposure to hole-body vibration-part 1: general requirements[S].

第一作者简介:王少钦,女,1981年1月 生,博士、副教授、硕士生导师。主要研 究方向为车辆-桥梁结构动力相互作用。 曾发表《风-列车-大跨度悬索桥系统非线 性耦合振动分析》(《工程力学》2016年第 33卷第12期)等论文。

E-mail: wangsq81@163.com