DOI:10.16450/j.cnki.issn.1004-6801.2024.06.006

基于 MFLME 的转子故障特征降维方法*

董晓鑫,赵荣珍,杨泽本 (兰州理工大学机电工程学院 兰州,730050)

摘要 针对故障特征维数过高导致故障的分类与辨识性能不佳的现状,提出一种基于中值特征线多图嵌入 (median feature line multi-graph embedding,简称 MFLME)的故障数据集降维算法。首先,将样本点到特征空间的 投影度量改进为中值度量,削弱算法的外推误差;其次,通过定义近邻特征线图和远邻特征线图,减少异类样本的混 淆,扩大类别间距,为后续故障的分类决策降低难度;最后,利用两个不同的转子故障模拟实验对算法性能进行验证。结果表明,该算法能降低故障分类难度,提升故障辨识准确率。

关键词 故障诊断;降维;特征线;图嵌入 中图分类号 TP18;TH165

引 言

设备的故障诊断是对生产异常行为的第一反 应,是保障生产过程安全、平稳运行的重要工具^[1]。 在智能制造时代,系统设备复杂化、智能化与集成化 趋势日益明显,对设备可靠性与维护管理提出了更 高的要求^[2]。以数据驱动的智能诊断决策技术,一 方面可以提取机械故障特征,实现设备故障信息的 智能表征,挖掘出背后隐含的本质信息,是在工业生 产过程中能够做出及时准确判断的关键^[3];另一方 面却受限于过高的故障数据维数,并且对振动信号 进行多域特征提取更会加剧"维数灾难"问题,给后 续的模式识别带来很大的挑战。因此,若能利用有 效的降维方法提取出表征故障本质的关键特征,则 更利于提升智能决策技术的可靠性。

近年来,许多降维方法已经成功应用于机械设备的故障诊断,其中代表性的有边缘Fisher分析(marginal Fisher analysis,简称MFA)^[4]、正交判别投影(orthogonal discriminant projection,简称ODP)^[5]等。上述算法通过寻找最佳投影矩阵进行降维,其中MFA的投影矩阵通过最大化Fisher准则求解,ODP则是通过散度加权差分的方法求解。这类使用样本点到点(point to point,简称P2P)度量学习的算法泛化性能有限,无法挖掘更多利于后续故障分类的判别信息。为此,近邻特征空间嵌入(nearest

feature space embedding, 简称 NFSE)^[6]、加权特征

线嵌入 (weighted feature line embedding, 简称

因此,为尽可能消除外推误差对算法产生的消极影响,本研究将 P2S 投影度量改进为中值度量,并 通过构建类内特征线图、类间特征线图、近邻特征线 图和远邻特征线图,以多图协同^[11]方式来实现有效 特征的提取。基于此,笔者提出一种基于 MFLME 的故障特征降维算法,为基于工业大数据资源的旋 转机械智能决策技术提供一种数据运算的理论 依据。

WFLE)^[7]、多核特征线嵌入(mutiple kernel feature line embedding,简称 MKFLE)^[8]等基于点对空间 (point to space,简称 P2S)度量的算法被提出。这类 算法能有效利用样本近邻空间几何结构,既可实现 压缩特征空间维数的目的,又能抽取出更多故障鉴 别信息,但使用 P2S度量的计算过程中存在外推误 差^[9]。针对此问题,文献[9]提出一种通过设定阈值 丢弃导致分类错误的泛化性特征线段方法,有效提 升了辨识准确率。文献[10]通过找到与待测点一起 满足给定几何关系的最短特征线段以避免外推误差 的产生。但是,上述通过增加特征线筛选过程的方 式会加重图嵌入阶段的计算负担,且仅采用单一图 嵌入结构无法有效表征高维故障数据中复杂的本征 信息^[11]。

^{*} 国家自然科学基金资助项目(51675253) 收稿日期:2022-05-00;修回日期:2022-08-25

1 相关原理简介

1.1 NFSE 算法

NFSE算法在图嵌入框架下通过考虑类别可分 性、邻域结构保持和近邻特征空间度量3个因素,设 法寻找出特征空间中最有效的降维投影矩阵。

该算法原理为:假设原始高维故障特征集为 $X = [x_1, x_2, \dots, x_n] \in R^D$,经过NFSE的投影变换 $Y = A^T X 实现样本特征降维,降维后的故障特征集$ 为 $Y = [y_1, y_2, \dots, y_n] \in R^d$,其中 $d \leq D$ 。具体步骤 如下。

1) 计算样本点到特征空间投影点的距离 $\|x_i - f^{(p)}(x_i)\|^2$,其中 $f^{(p)}(x_i)$ 为样本点 x_i 在特征空间 $f^{(p)}$ 中的投影点,其计算方法为

$$\begin{cases} f^{(P)}(x_i) = \sum_{j=1}^{P} \lambda_j x_j \\ \sum_{j=1}^{P} \lambda_j = 1 \end{cases}$$

$$(1)$$

为简化计算,本研究统一将P值取为2,即特征 空间为任意两个样本点构建的特征线。

2) 计算类内、类间散度矩阵。类内散度矩阵 S_w^(P)由 k₁个距离最近的同类特征空间计算得到,类 间散度矩阵 S_b^(P)由 k₂个距离最近的异类特征空间计 算得到,具体计算可表示为

$$S_{w}^{(P)} = \sum (x_{i} - f_{w}^{(P)}(x_{i})) (x_{i} - f_{w}^{(P)}(x_{i}))^{T}$$
(2)
$$S_{h}^{(P)} = \sum (x_{i} - f_{h}^{(P)}(x_{i})) (x_{i} - f_{h}^{(P)}(x_{i}))^{T}$$
(3)

3) 构建目标函数J

$$J = \arg \max A^{\mathsf{T}} S_{b}^{(P)} A / A^{\mathsf{T}} S_{w}^{(P)} A$$
(4)
将式(4)转化为广义特征值求解问题,即

$$\boldsymbol{S}_{b}^{(p)}\boldsymbol{A} = \lambda \boldsymbol{S}_{w}^{(p)}\boldsymbol{A} \tag{5}$$

对式(5)进行广义特征值分解,其中前*d*个最大的特征值对应的特征向量为待求降维投射矩阵。

1.2 P2P加权度量

P2P加权度量是ODP算法的核心,其本质是利用标签信息与样本局部结构信息定义任意两点间的权重,并以此在构建散度矩阵时对近邻样本进行赋权,间接增大异类样本间的区分度,提升降维效果。 具体表示为

$$W_{ij} = \begin{cases} \theta & (x_i \pi x_j \beta 同 类 近 邻 点) \\ \theta(1 - \theta) & (x_i \pi x_j \beta 异 类 近 邻 点) \end{cases}$$
(6)

其中: $\theta = \exp\left(-\|x_i, x_j\|^2 / \beta\right), \|x_i, x_j\| \to x_i \to x_j$ 之间 的欧氏距离, β 为所有样本间欧氏距离均值的平方。

分析可知: $\theta \pi \theta (1 - \theta)$ 均为介于[0,1]之间的 单调递减函数,距离越大对应权重越小,即相似样本 之间的权重大于不相似样本;在距离相同的条件下 $\theta > \theta (1 - \theta)$,即同类样本之间的权重大于异类样 本。因此,通过近邻赋权的处理将更有利于故障的 分类。

NFSE算法具有良好的近邻域结构保持能力, ODP算法则通过对近邻样本赋权,对故障样本的分 类更加有利,若能将二者优势相结合,将达到既能保 持近邻域结构又能提升降维效果的目的。

2 MFLME算法的建立

2.1 特征空间中值度量的构建

NFSE算法虽具有良好的邻域结构保持能力, 在提高算法泛化性能方面具有优势,但其采用的特 征空间投影度量方法存在外推误差,使降维效果下 降明显。

投影度量如图1所示。其中, P_a , P_a , P_a , P_b , $P_$

外推投影点的存在是产生外推误差的直接原因。外推误差的改进如图2所示。由图可知,样本 点*X*₁,*X*₂与待测点*X*_i距离相较于样本点*X*₃,*X*₄更远, 但是在投影度量的情况下|*X*_i*P*₁₂| < |*X*_i*P*₃₄|,这种外 推误差导致散度矩阵不能真实有效地反映样本的局 部拓扑结构。因此,本研究提出将投影度量改进为 中值点度量的方法,即取样本点*X*₁,*X*₂和样本点*X*₃,

Fig.2 Improvement of extrapolation error

X₄的中点作为投影点,观察可知|X_iP_{m12}|>|X_iP_{m34}|。 因此,该方式更符合真实的数据分布结构,可以解决 外推误差问题。

为进一步说明中值度量的优势,将图2推广到 一般情况。由图1可知,投影度量可被划分为反向 外推投影、中间投影和正向外推投影3种情况,其中 反向外推与正向外推均属于外推投影,是研究的关 键。一般情况下,中值度量相较于投影度量更符合 样本分布的真实拓扑结构,即待测样本与特征线的 度量距离越接近于待测样本与组成特征线的样本平 均距离越好。

中值度量的证明如图 3 所示。以反向外推投影 为例,将 X_1,X_2 中点作为坐标原点并建立坐标轴,因 为待测点 X_n 到 X_1,X_2 的距离为确定值,则可将待测 点 X_n 看作是焦点为 X_1,X_2 且轨迹确定的椭圆曲线上 一点。此时假定该椭圆曲线长轴为a,短轴为b,半 焦距为c,则待测点 X_n 与组成特征线的点 X_1,X_2 的平 均距离为2a/2 = a。基于垂直投影下待测点 X_n 到 投影度量点 P_n 距离取值范围为 $|X_n P_n| \leq b$,而基于 中值度量下待测点 X_n 到中值度量点 P_{mn} 距离取值范 围 为 $b \leq |X_n P_{m1}| \leq a$,因此有 $|X_n P_n| \leq b \leq$ $|X_n P_{mn}| \leq a (mean(|X_n X_1| + |X_n X_2|))$ 。可知,中值 度量下的距离更接近于待测点与组成特征线的样本 平均距离(正向外推投影同理),说明在外推误差存 在的情况下中值度量更符合数据的真实分布。

图 3 中值度量的证明 Fig.3 Proof of the median metric

2.2 近邻特征图及远邻特征图的建立

NFSE算法由图嵌入算法MFA改进而来,二者

属于局部结构保持算法,缺少对样本全局几何结构 的建立与描述。ODP算法通过类别信息指导全局 近邻赋予不同权重,可有效区分易产生混淆的异类 近邻样本。

受ODP算法中P2P加权度量的启发,本研究拟 通过类别信息指导构建基于全局的近邻特征线图 G_{mm},以缓解异类样本的混淆状况。另外,同类样本 远邻点的分布决定同簇样本团的聚合情况,建立远 邻特征图 G_f可以起到扩大异类样本团簇间距的 作用。

近邻特征线图的构建原理如图4所示。可见, 圆形与三角形两类故障样本产生了混淆。根据样本 标签信息,将同类近邻特征线赋予比异类近邻特征 线更大的权重,使混淆样本靠近同类特征线,疏远异 类特征线,从而达到减少异类故障样本混淆的 目的。

图4 近邻特征线图的构建原理

Fig.4 Principle of construction of nearest neighbor feature line graph

根据 k 近邻准则构建全局近邻特征线图 G^(P), 并依据式(7)为该图的边赋予权重,构建权值 矩阵 W_n

$$W_{n} = \begin{cases} \theta & (f^{(p)}(x_{i}) \exists x_{i}) \exists x_{i} \\ \theta(1-\theta) & (f^{(p)}(x_{i}) \exists x_{i}) \\ 0 & (\sharp \\ 0 & (\xi \\ 0 & (\xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & \xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & \xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & \xi \\ 0 & \xi \\ 0 & (\xi \\ 0 & \xi \\ 0 & \xi$$

(7)

其中:
$$\theta = \exp\left(-\left\|x_i, f^{(p)}(x_i)\right\|^2 / \beta\right), \left\|x_i, f^{(p)}(x_i)\right\|$$
为

 x_i 到 $f^{(p)}(x_i)$ 的欧氏距离, β 为所有样本与特征线之间欧氏距离均值的平方。

远邻特征线图的构建原理如图 5 所示。可见, 圆形样本团簇较分散且相聚方块样本团簇较近。以 标签信息为依据,将同类远邻特征线赋予较异类近 邻特征线更大的权重,使得同类远邻特征线向团簇 中心聚合,异类近邻特征线远离,以达到增大不同类 别团簇间距的目的。

构建全局远邻特征线图 *G*_{mf},并依据式(8)为该 图的边赋权重,构建权值矩阵 *W*_f

图5 远邻特征线图的构建原理

Fig.5 Principle of constructing of distant neighbor features line graph

$$W_{f} = \begin{cases} \theta & (f^{(p)}(x_{i}) \exists x_{i}) \exists x_{i} \\ \theta(1-\theta) & (f^{(p)}(x_{i}) \exists x_{i}) \\ 0 & (\sharp \\ 0 & (\xi \\ 0 & (\xi \\ 0 & (\xi \\ 0 & 0) \end{cases}) \end{cases}$$

(8)

2.3 目标函数的建立

本研究在点到特征线中值度量的基础上,采用 多图嵌入方法构建类内特征线图 G^(P)、类间特征线 图 G^(P)、近邻特征线图 G^(P)和远邻特征线图 G^(P),并 以多图协同方式来表征高维数据间的复杂几何关 系,实现鉴别特征的提取。基于点到特征线中值建 立的多图散度矩阵表示为

$$\begin{cases} \mathbf{S}_{mw}^{(P)} = \sum (x_i - f_{mw}^{(P)}(x_i)) (x_i - f_{mw}^{(P)}(x_i))^{\mathrm{T}} \\ \mathbf{S}_{mb}^{(P)} = \sum (x_i - f_{mb}^{(P)}(x_i)) (x_i - f_{mb}^{(P)}(x_i))^{\mathrm{T}} \\ \mathbf{S}_{mn}^{(P)} = \sum W_n (x_i - f_{mn}^{(P)}(x_i)) (x_i - f_{mn}^{(P)}(x_i))^{\mathrm{T}} \\ \mathbf{S}_{mf}^{(P)} = \sum W_f (x_i - f_{mf}^{(P)}(x_i)) (x_i - f_{mf}^{(P)}(x_i))^{\mathrm{T}} \end{cases}$$

其中: $f_{mw}^{(P)}(x_i), f_{mb}^{(P)}(x_i), f_{mn}^{(P)}(x_i)$ 和 $f_{mf}^{(P)}(x_i)$ 分别为类 内、类间、近邻和远邻特征线中值点; W_n, W_f 分别为 近邻权值矩阵和远邻权值矩阵。

构建目标函数时,为了达到类内样本聚集、类间 样本分散的目的,需要最小化类内特征线散度矩阵 *S*^(P)_{mw}且最大化类间特征线散度矩阵*S*^(P);同时为减少 异类近邻样本混淆,扩大异类样本团簇间距,需要最 大化远邻特征线散度矩阵*S*^(P)且最小化近邻特征线 散度矩阵*S*^(P)。采用Fisher准则会因小样本问题导 致矩阵奇异,降低算法效果,因此参考ODP算法将 目标函数设置为最大化散度加权差分的形式。为使 算法更利于故障分类,构建目标函数如下

 $\arg \max_{A} A^{T} \left(\alpha \left(S_{mb}^{(P)} + S_{mf}^{(P)} \right) - (1 - \alpha) \left(S_{mw}^{(P)} + S_{mn}^{(P)} \right) \right) A$ s.t. $A^{T} A = I$

(10)

其中:α为调节因子,用以调节不同散度矩阵的贡 献率。

利用拉格朗日乘子法,式(10)可等价为广义特

征值求解问题,即

$$\left(\alpha(S_{mb}^{(P)}+S_{mf}^{(P)})-(1-\alpha)(S_{mw}^{(P)}+S_{mn}^{(P)})\right)A = \lambda A$$
(11)

将特征值降序排列,取最大的*d*个特征值对应 的特征向量组成降维投影矩阵。

2.4 MFLME算法步骤

输入:原始特征数据集*X*;同类、异类近邻特征 线个数*k*₁,*k*₂以及同类远邻特征线个数*k*₃;散度矩阵 贡献率调节参数α;目标维数*d*。

输出:投影矩阵A;低维特征集Y。

MFLME算法的具体步骤如下:

构建类内、类间、近邻和远邻特征线图,并依据具体实验数据确定优化指数α与目标维数d;

2) 根据式(9)计算各散度矩阵;

3) 对目标函数式(11)进行特征值分解,取前 d 个最大的特征值对应的特征向量组成投影矩阵A;

4) 由 *Y* = *A*^T*X* 计算样本在低维空间中的投影。

3 基于 MFLME 算法的转子故障诊 断流程

将本研究提出的MFLME降维算法用于转子的故障诊断,诊断流程如图6所示。

故障诊断具体步骤如下:

1) 对小波消噪后的多通道振动信号提取多域

Fig.6 Procedure of fault diagnosis

特征,并构建高维特征集X,将X归一化处理后划分 训练集X_{tran}与测试集X_{test};

2) 设定 MFLME 算法参数,按照式(11)构建目标函数,将 X_{train} 输入算法进行训练,得到投影矩阵A;

 根据 Y = A^T X 对 X_{train} 和 X_{test} 分别进行降维 投影,得到低维特征集 Y_{train} 和 Y_{test}。

4)将投影后的 Y_{train}和 Y_{test}输入至 k 近邻分类器 进行故障分类,并输出辨识结果。

4 实验说明

4.1 转子实验平台

为验证 MFLME 算法的可行性,本研究采用 图 7 所示的转子实验台进行转子故障模拟实验。将 6 个电涡流传感器分别布置于 2 个质量盘处的径 向(y,x)位置和 2 个轴承座处的径向(y)位置,用 以采集不对中、气流扰动、不平衡、碰磨、松动及正 常 6 种不同状态下转子的振动信号。其中,电涡流 传感器型号为厚德 WT01型传感器,其频率范围为 0~10 kHz。在转速为 2 800 r/min、采样频率为 10 kHz 的条件下,将采样时间设定为 10.3 s,每隔 1 024 个采样点作为一个样本,每种状态可采集 100 个样本,按照 20:80 划分训练数据集与测试数据集, 对每个通道的振动信号提取 38 个特征参数,共得到 38 × 6 = 228 个特征。特征参数如表 1 所示。

图7 转子实验台 Fig.7 Rotor test bench

	表1	特征参	数
Tab.1	Charae	cteristic	parameters

序号	特征	序号	特征	序号	特征
1	最大值	9	方根幅值	17	均值频率
2	最小值	10	均方根值	18	频谱二阶矩
3	峰峰值	11	绝对均值	19	标准偏差率
4	方差	12	波形指标	20	峭度频率
5	均值	13	峰值指标	21	均方根频率
6	歪度	14	脉冲指标	22	中心频率
7	峭度	15	裕度指标	<u></u>	4层小波包分解
8	均方值	16	峭度指标	23~38	频带能量特征

1~16为时域特征;17~22为频域特征;23~38为时频域特征

4.2 参数设定

本研究中需要设定的参数包括:目标维数*d*;散 度矩阵式(9)中近邻数 k_1, k_2 和远邻数 k_3 ;目标函数 式(11)中参数 α 。将目标维数*d*设定为故障的类别 数减去1^[12],即*d*=6-1=5。参数 k_1, k_2 和 k_3 的取 值范围分别为5 $\leqslant k_1, k_3 \leqslant$ 10和5 $\leqslant k_2 \leqslant$ 20^[6,13],通 过网格搜寻选取最优解。参数 k_1, k_2 和 k_3 的选择如图 8所示。本研究将 k_1, k_2 和 k_3 分别取为5,7和5;散度 贡献率参数 α 设定范围为0~1;步长为0.1。参数 α 的选择如图9所示。可见, α 取为0.2时准确率最高, 因此将 α 设定为0.2。

4.3 可分性指标

为评价低维测试集各个故障类别间的可分性, 根据文献[12]引入 $\delta = S_{B}/S_{W}$ 来评价降维效果,即

$$S_{B} = \frac{1}{k} \sum_{i=1}^{k} (m_{i} - m) (m_{i} - m)^{\mathrm{T}}$$
(12)

$$S_{Wi} = \frac{1}{c} \sum_{i=1}^{c} (y_n^{(i)} - m_i) (y_n^{(i)} - m_i)^{\mathrm{T}}$$
(13)

$$\mathcal{S} = S_{B} / \sum_{i=1}^{c} S_{w_{i}} p_{i} \tag{14}$$

其中:k为故障类别数; m_i 为第i类均值;m为总体均 值;c为每类中的样本个数; p_i 为第i类的先验概率, $p_i = n_i/n; y_n^{(i)}$ 为第i类所包含的样本; S_{Wi} 为第i类的 散度。

5 实验结果与分析

5.1 降维效果分析

为验证本研究所建立的MFLME算法的有效性,对降维后的测试数据集选取前3个特征主元进行可视化表示,并选择MFA^[4],ODP^[5]及NFSE^[6]等算法进行对照分析。

三维可视化如图 10 所示。可见:经 MFLME算 法降维后的可视化效果最佳,同类故障样本聚集成 团,不同故障样本间隔明显;经 MFA算法降维后的 故障样本松散且各类样本间混叠严重,故障区分效 果较差;算法 ODP 与 NFSE 可视化效果介于 MFLME与 MFA之间,分别存在着不同程度的故 障样本混叠现象。

Fig.10 3D visualization results for each algorithm

为量化所建立算法的降维效果,本研究将测试 样本经各算法降维后的5维主元特征输入*k*近邻分 类器中进行故障辨识。不同状态的识别准确率如 表2所示。

由表2可知:MFA算法的故障分类效果最差;

表 2	不同物	犬态识	别	准确率	5		
 	• . •			1100			

18	D.2 K	ecognitic	on rate	e or a	ifferen	t state	es %
		各状态	类别的	诊断准	确率		平均
降维方法	7744	て可能	7举 房	气流	+1/ =4	工些	识别
	小刈甲	小十侽	 他	扰动	松切	松动 正常	准确率
MFA	66.3	25.0	61.3	15.0	22.5	67.5	42.9
ODP	100.0	97.5	78.8	33.8	45.0	35.0	65.0
NFSE	86.3	96.3	7.5	85.0	28.8	7.50	51.9
MFLME	100.0	100.0	100.0	100.0	100.0	98.8	99.8

MFLME在4种算法中效果最好,其中5种故障均被 正确辨识,仅少数正常状态被错分。

为更加有效说明所建立算法的优势,本研究计 算了各算法的降维可分性指标,如表3所示。可见, MFLME算法可分性明显高于其他算法。

表3 算法可分性指标

Tab.3 Algorithm separability index

降维算法	MFA	ODP	NFSE	MFLME	
可分性指标δ	0.38	0.95	1.64	53.41	

综合分析可知:MFA算法降维效果较差,其中 故障样本被大量错分,无法挖掘出有利于故障分类 识别的敏感特征;ODP与NFSE算法降维效果好于 MFA,但仍存在故障样本被分错类的情况;由于外 推误差的存在,导致NFSE虽然可分性更好,但其降 维效果却差于ODP算法;本研究提出的MFLME算 法,通过中值特征线度量计算可有效削弱特征空间 算法中可能产生的外推误差,将新建立的近邻特征 图、远邻特征图嵌入算法的降维过程中,既使样本全 局与局部结构得到保持,又有效降低了故障的分类 难度。

5.2 不同训练比例实验

为了对所建立的 MFLME 算法的稳定性进行 验证,本研究分别按照不同比例对训练样本与测试 样本进行划分,并将经过各算法降维后的5维测试 集样本放入 &近邻分类器中进行分类识别。不同比 例实验准确率如图 11 所示。

由图 11 可知:各算法的识别准确率与训练样本 数量成正相关;ODP算法较为稳定,但准确率有待 提高;MFA与NFSE算法在训练样本数小于 40 时 准确率较低,其原因在于采取的最大化Fisher 准则 在小样本问题严重情况十分影响降维效果; MFLME始终保持稳定且较高的识别率,这是因为 其采用最大化加权散度之差的方法,有效解决了故 障诊断过程中普遍存在的小样本问题。

5.3 抗噪性实验

在实际的设备故障监测环境中存在着大量的环 境噪声,因此对各算法的抗噪性能进行测试。分别 对采集的振动信号加入信噪比为-4,-2,0,2和 4 dB的随机噪声,抗噪性实验结果如图12所示。

由图 12 可知:随着信噪比增大,整体诊断准确 率上升;基于 P2S 度量的 NFSE 与 MFLME 算法抗 噪性能优于基于 P2P 度量的 MFA 与 ODP 算法; MFLME 相较于其他 3 种算法在不同程度的噪声环 境下都保持了良好的鲁棒性能。

5.4 算法泛化性实验

为验证 MFLME 算法的通用性,选取文献[14] 中的双跨转子实验台进行各算法的泛化性研究。将 12个电涡流传感器分别布置于该实验台的 6 个关键 截面处,分别对正常、松动、不平衡、不对中及碰磨等 5 种不同状态进行模拟实验。其中,电涡流传感器 型号为 JX20XL型传感器,其频率范围为0~10 kHz。 在转速为 2 800 r/min、采样频率为 5 kHz 的条件 下,每隔 1 024 个采样点作为一个样本,将采样时间 设定为 20.5 s。每种状态下采集 100 个样本,按照 20:80 构建训练数据集与测试数据集,再按表 1 对每 个通道的振动信号样本提取 38 个特征参数,共计 38×12=456 个特征。

参数设定如下:近邻参数 $k_1 = 5, k_2 = 5;$ 远邻参数 $k_3 = 5;$ 调节参数 $\alpha = 0.3;$ 目标维数d = 4。对经各算法降维后的低维特征集选取前3个主元进行可视化绘制,降维效果如图13所示。

为进一步准确描述降维效果,本研究计算了各 算法的降维可分性指标,如表4所示。将测试样本 经各算法降维后的4维主元特征输入*k*近邻分类器 中进行故障辨识,不同故障识别率如表5所示。

综合分析可知:本研究建立的MFLME算法降 维后的低维特征子集,其降维效果良好,且分类指标

Fig.13 Dimensionality reduction effects

表4 降维可分性指标

Tab.4 Separability index of dimensionality reduction

降维算法	MFA	ODP	NFSE	MFLME
可分性指标δ	0.04	2.60	1.39	12.94

表5 不同故障识别率

Tab.5Different fault identification rate%

降维	各	平均识别				
算法	不对中	不平衡	碰磨	松动	正常	准确率
MFA	12.5	11.3	10.0	67.5	56.3	31.5
ODP	56.3	80.0	92.5	46.3	95.0	74.0
NFSE	82.5	68.8	58.8	53.8	80.0	68.8
MFLME	100.0	100.0	100.0	100.0	92.5	98.5

优异,故障辨识准确率也明显高于MFA,ODP和NFSE等算法,进一步说明了MFLME算法具有良好的泛化性。

6 结 论

 基于 MFLME 的故障数据集降维算法通过 改进点到特征线的距离度量,削弱了计算过程中的 外推误差。将新定义的近邻特征线图、远邻特征线 图以多图协同的方式嵌入降维过程中,从而达到提 升故障辨识精度的目的。

2)通过两个转子故障模拟实验对算法进行了 验证,结果表明,该算法相较于MFA,ODP和 NFSE等算法,不仅在降维方面具有优势,而且也更 为稳定可靠,有效提高了故障的辨识精度。

参考文献

 [1] 钱锋,杜文莉,钟伟民,等.石油和化工行业智能优化 制造若干问题及挑战[J].自动化学报,2017,43(6): 893-901.

QIAN Feng, DU Wenli, ZHONG Weimin, et al. Problems and challenges of smart optimization manufacturing in petrochemical industries[J]. Acta Automatica Sinica, 2017, 43(6): 893-901.(in Chinese)

[2] 陈是扦,彭志科,周鹏.信号分解及其在机械故障诊 断中的应用研究综述[J].机械工程学报,2020, 56(17):91-107.

CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107.(in Chinese)

[3] 雷亚国,贾峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(5):94-104.

LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104.(in Chinese)

- [4] YAN S C, XU D, ZHANG B Y, et al. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
- [5] LI B, WANG C, HUANG D S. Supervised feature extraction based on orthogonal discriminant projection[J]. Neurocomputing, 2009, 73(1/2/3): 191-196.
- [6] CHEN Y N, HAN C C, WANG C T, et al. Face recognition using nearest feature space embedding [J].
 IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1073-1086.
- [7] IMANI M, MONTAZER G A. Phishing website detection using weighted feature line embedding [J]. The ISC International Journal of Information Security, 2017, 9(2): 147-159.
- [8] CHEN Y N. Multiple kernel feature line embedding for hyperspectral image classification [J]. Remote Sensing, 2019, 11(24): 2892.

- [9] KAMAEI K, ALTINÇAY H. Editing the nearest feature line classifier [J]. Intelligent Data Analysis, 2015, 19(3): 563-580.
- [10] 丁建坤, 韩德强, 杨艺.最短特征线段多分类器系统 设计[J].西安交通大学学报, 2015, 49(9): 77-83.
 DING Jiankun, HAN Deqiang, YANG Yi. Design of multiple classifier systems based on shortest feature line segment [J]. Journal of Xi'an Jiaotong University, 2015, 49(9): 77-83.(in Chinese)
- [11] HUANG C B, ABEO T A, LUO X Z, et al. Semisupervised manifold alignment with multi-graph embedding [J]. Multimedia Tools and Applications, 2020, 79(27): 20241-20262.
- [12] 石明宽,赵荣珍.基于局部边缘判别投影的机械故障 诊断方法[J].振动、测试与诊断,2021,41(1): 126-132.
 SHI Mingkuan, ZHAO Rongzhen. Mechanical fault diagnosis method based on local edge discriminant projection[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(1): 126-132.(in Chinese)
- [13] ZHAO X L, JIA M P. Fault diagnosis of rolling bearing based on feature reduction with global-local margin fisher analysis [J]. Neurocomputing, 2018, 315: 447-464.
- [14] 户文刚,赵荣珍.基于转子故障数据集的KSELF降维 方法[J].振动、测试与诊断,2021,41(1):13-18.
 HU Wengang, ZHAO Rongzhen. KSELF dimensionality reduction method based on rotor fault dataset [J].
 Journal of Vibration, Measurement & Diagnosis, 2021,41(1):13-18.(in Chinese)

第一作者简介:董晓鑫,男,1997年10 月生,硕士生。主要研究方向为旋转机 械智能故障诊断。 E-mail: 1836509120@qq.com

通信作者简介:赵荣珍,女,1960年12 月生,博士、教授、博士生导师。主要研 究方向为旋转机械故障诊断、机械工程 动态测试技术、计算智能及机械系统动 力学。

E-mail: zhaorongzhen@lut.cn