DOI:10.16450/j.cnki.issn.1004-6801.2025.01.014

基于 ISGMD-RPT 的滚动轴承故障诊断方法*

李 可^{1,2}, 彭 雄^{1,2}, 宿 磊^{1,2}, 顾杰斐^{1,2}, 薛志钢³ (1.江苏省食品先进制造装备技术重点实验室 无锡,214122) (2.江南大学机械工程学院 无锡,214122)

(3.江苏省特种设备安全检验监督研究院无锡分院 无锡,214071)

摘要 针对传统辛几何模态分解(symplectic geometry mode decomposition,简称 SGMD)方法因嵌入维数选择依靠 经验公式,导致出现信号模态混叠和过度分解的问题,提出了一种改进的辛几何模态分解(improved symplectic geometry mode decomposition,简称 ISGMD)方法。首先,通过计算原始信号的功率谱密度得到最大主峰的频率并 设定嵌入维数区间,根据峭度准则筛选分解后的辛几何分量(symplectic geometry component,简称 SGC),得到每 个嵌入维数对应的最优 SGC;其次,引入模态混叠指数、过分解指数与峭度指标的综合评估目标值函数,选择最优 嵌入维数;然后,利用拉马努金周期变换(ramanujan periodic transform,简称 RPT)方法进行微弱故障特征增强;最 后,通过仿真信号及风机滚动轴承实验数据,并与经验模态分解和局部均值分解等方法进行对比,验证了所提出滚 动轴承故障诊断方法的有效性。

关键词 改进的辛几何模态分解;拉马努金周期变换;滚动轴承;故障诊断 中图分类号 TH17;TH133.3

引 言

随着旋转机械在工业领域的大量应用,滚动轴 承的重要性日益凸显。滚动轴承长期在高速、重载 条件下工作,不可避免地会产生各种故障^[1],容易引 发严重事故。因此,对滚动轴承进行故障诊断具有 重要意义^[2]。

滚动轴承故障信号往往淹没于复杂的背景噪声 中,因而难以提取其特征。Huang等^[3]提出了经验模 态分解(empirical mode decomposition,简称EMD) 进行特征提取,但EMD存在模态混叠和边界效应^[4]。 鉴于此,局部均值分解(local mean decomposition,简称LMD)^[5]、变分模态分解(variational modal decomposition,简称VMD)^[6]和奇异谱分解(singular spectral decomposition,简称SSD)^[7]方法被提出。其中: VMD通过非递归方式利用中心频率确定模态分量, 可有效抑制模态混叠,但仍需人工设定参数;SSD可 以自适应确定嵌入维数,分解为奇异谱分量,但也面 临模态混叠和弱故障特征提取的问题^[8]。

Pan等^[9]将辛几何方法引入旋转机械故障诊断, 提出辛几何模态分解(symplectic geometry mode decomposition, 简称 SGMD)。SGMD 无需输入主观 参数,通过辛几何相似变换求解Hamilton矩阵的特征值,并利用对应的特征向量重构单分量信号,已经 在故障诊断和医学诊断领域得到了应用^[10]。然而, SGMD在构建轨迹矩阵时借鉴了SSD的方法,导致 其在处理强背景噪声信号时易出现模态混叠问题。 此外,SGMD分解后得到的辛几何分量不可避免地 受带内噪声干扰,因此有必要抑制带内噪声,增强冲 击特征。Sethare等^[11]提出了周期性子空间变换(periodicity transformation,简称PT)方法,通过信号投 影的周期性子空间来提取信号的周期分量。Muresan等^[12]基于PT提出了精确周期子空间分解,但仅 适用于信号长度为周期整数倍的情况。Vaidyanathan^[13-14]提出了拉马努金周期变换(ramanujan periodic transform,简称RPT),通过投影到与信号周期 相关的正交子空间,有效提取并增强了周期分量。

笔者提出一种基于改进辛几何模态分解和拉马 努金周期变换的滚动轴承故障诊断方法。首先,提 出了一种嵌入维数选择方法来抑制 SGMD 的模态 混叠;其次,对分解后的敏感 SGC 进行 RPT 特征增 强,抑制 SGC 的噪声和谐波干扰并增强冲击特征; 最后,通过仿真和实验数据,证明了该方法具有良好

^{*} 国家自然科学基金资助项目(52175096)

收稿日期:2022-09-05;修回日期:2023-01-09

的故障诊断性能。

1 改进的辛几何模态分解方法

1.1 辛几何模态分解方法

辛几何模态分解方法具体参见文献[9],主要有 4个步骤。

 1)轨迹矩阵构建。对于给定的离散振动信号 x=x₁, x₂, …, x_n,根据Takens嵌入定理,一维数据 可重构为多维信号

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_{1+(d-1)\tau} \\ \vdots & \vdots \\ \boldsymbol{x}_m & \cdots & \boldsymbol{x}_{m+(d-1)\tau} \end{bmatrix}$$
(1)

其中:d为嵌入维数; τ 为延迟时间; $m = n - (d - 1)\tau_{\circ}$

嵌入维数 d 通过计算初始信号 x 的功率谱密度 自适应选择。计算信号的功率谱密度,估计功率谱 密度最大峰值对应的频率 f_{max} 。如果 f_{max} / f_s 小于阈值 10^3 ,则嵌入维数 d 设为 n / 3,否则 d 设为 $1.2 \times (f_s / f_{max})$,其中:n为数据长度; f_s 为采样频率。

2)辛几何相似变换。根据轨迹矩阵 X 构建协 方差矩阵 A 和 Hamilton 矩阵 M 分别为

$$A = X^{\mathrm{T}} X \tag{2}$$

$$M = \begin{bmatrix} A & 0 \\ 0 & -A^{\mathrm{T}} \end{bmatrix} \tag{3}$$

令 W = M²,根据 Hamilton 矩阵定义,得到辛 正交矩阵Q为

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{W}\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{B} & \boldsymbol{R} \\ \boldsymbol{0} & \boldsymbol{B}^{\mathrm{T}} \end{bmatrix}$$
(4)

其中:B为上三角矩阵; $\lambda(A) = \lambda(B) = \lambda^2(X)_{\circ}$

根据 Hamilton 矩阵性质,计算 B 的特征值 λ_1 , $\lambda_2, \dots, \lambda_d$,可得到 X 的特征值 $\sigma_i = \sqrt{\lambda_i}$ (*i*=1, 2, …, *d*)。其中: λ_i 为降序排列,较小的值通常被认为是噪 声分量。记 Q_i (*i*=1, 2, …, *d*)为矩阵 A 的特征值 对应的特征向量,则

$$\boldsymbol{S}_i = \boldsymbol{Q}_i^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \tag{5}$$

$$Z_i = Q_i S_i \tag{6}$$

得到初始单分量矩阵 Z_i ,则轨迹矩阵Z可以表示为 $Z = Z_1 + Z_2 + \dots + Z_d$ 。

3) 对角平均化。经过以上变换得到初始分量 矩阵的维数为*m×d*,经过对角平均可将矩阵*Z*_i转化 为*d*组长度为*n*的时间序列,这*d*组时间序列之和即 为原始信号。为了计算方便,定义矩阵的元素为*z*_{ij}, 对于任何初始单分量*Z*_i,定义

$$\begin{cases} d^* = \min(m, d) \\ m^* = \max(m, d) \\ z^*_{ij} = z_{ij} & (m \le d) \\ z^*_{ij} = z_{ji} & (m > d) \end{cases}$$
(7)

根据式(8)进行对角平均,得到

$$y_{k} = \begin{cases} \frac{1}{k} \sum_{q=1}^{k} z_{q,k-q+1}^{*} & (1 \leq k \leq d^{*}) \\ \frac{1}{d^{*}} \sum_{q=1}^{d^{*}} z_{q,k-q+1}^{*} & (d^{*} \leq k \leq m^{*}) \\ \frac{1}{n-k+1} \sum_{q=k-m^{*}+1}^{n-m^{*}+1} z_{q,k-q+1}^{*} & (m^{*} \leq k \leq n) \end{cases}$$

$$\overset{\text{A}}{=} 4 \notin \mathbf{H} \stackrel{\text{A}}{\to} \overset{\text{B}}{=} \overset{\text{A}}{=} \overset{\text{B}}{\to} \overset{\text{A}}{\to} \overset{\text{B}}{\to} \overset{\text{B}}$$

获得d组单分量信号为

$$Y = Y_1 + Y_2 + \dots + Y_d \tag{9}$$

4)相似分量重组。由于SGMD方法分解出来的分量并不是相互独立的,可能包含频率和特征相同的分量,因此需要对各个分量进行相似性分析,合并得到SGC_i,再从原始信号x中删除SGC_i,残余信号记作g^h,即

$$g^{h} = x(n) - \sum_{i=1}^{h} \operatorname{SGC}_{i}$$
(10)

其中:h为迭代次数。

当残余信号和原信号的归一化均方误差(nor-malized mean square error,简称NMSE)小于给定阈 值时,则停止迭代

NMSE^{*h*} =
$$\sum_{k=1}^{n} g^{h}(k) / \sum_{k=1}^{n} x(k)$$
 (11)

满足阈值条件停止迭代时,得到

$$x(n) = \sum_{h=1}^{N} \text{SGC}^{h}(n) + g^{(N+1)}(n)$$
 (12)

其中:N为获得SGC分量的个数;g^(N+1)(n)为残差分量。

1.2 嵌入维数对SGMD分解结果的影响

传统的 SGMD 基于经验公式选择嵌入维数,可 能会造成嵌入维数选择不当,从而对分解结果产生 不利影响。为了研究嵌入维数对 SGMD 分解能力 的影响,构建滚动轴承仿真信号为

$$\begin{cases} x_{1}(t) = \sum_{k} \exp\left(\frac{-\xi_{1}}{\sqrt{1-\xi_{1}^{2}}}(t-kT_{a}-\tau_{1})\right) \times \\ \sin 2\pi f_{n}(t-kT_{a}-\tau_{1})(1+A_{0})\cos(2\pi f_{r}t) \\ x_{2}(t) = \sum_{k=1}^{2} A_{k}\cos(2\pi f_{k}t+\omega_{k}) \\ x(t) = x_{1}(t) + x_{2}(t) + n(t) \end{cases}$$
(13)

其中: $x_1(t)$ 为轴承故障模拟信号;共振频率 f_n = 4 kHz;转频 f_r = 30 Hz;时间指数 τ_k = 0.05;阻尼比 $\xi = 0.05; T_a = 1/90$ s;故障频率 $f_o = 90$ Hz; $x_2(t)$ 为 由 2 个谐波组成的干扰信号; $A_1 = 0.6; f_1 = 3$ kHz; $A_2 = 0.4; f_2 = 2 200$ Hz;采样频率 $f_s = 16 384$ Hz;采样 点数n = 8 192; n(t)为添加信噪比为- 13 dB的高斯 白噪声。

图 1 为仿真信号波形频谱图。从图 1(b)可看出,4 kHz 的频带受到了一定的噪声干扰,同时在图 1(c)中故障特征也难以提取。

Fig.1 Spectrogram of the simulated signal waveform

采用 SGMD 方法对该仿真信号进行处理, SGMD 分解后故障分量频谱如图 2 所示。可以看出,轴承故障信息主要分布在 SGC₂中,在 SGC₁和 SGC₃中也含有部分故障信号分量。同时,SGC₂中 含有 2 kHz 和 3 kHz 的谐波分量,这说明传统 SGMD 方法的分解结果不准确,在分解过程中发生 了模态混叠。

在该仿真信号中,传统SGMD根据功率谱密度 自适应选择的嵌入维数 d为6,这是导致模态混叠的

图2 SGMD分解后故障分量频谱

原因。笔者将嵌入维数手动设置为6,10,14,18和 22。不同嵌入维数下SGMD分解后故障分量频谱 如图3所示。可见,在嵌入维数 d=18附近,分解效 果最佳,谐波分量被成功分离。

图 3 不同嵌入维数下 SGMD 分解后故障分量频谱 Fig.3 Spectrum of fault components after SGMD decomposition with different embedding dimensions

表1为不同嵌入维数下4kHz附近谱线幅值之 和。可以看出,d=18时,4kHz频带附近的谱线幅 值之和最大,信号能量损失最低,分解效果最好。因 此,选择合理的嵌入维数能够提高 SGMD 的分解 能力。

表1 不同嵌入维数下4 kHz附近谱线幅值之和 Tab.1 The sum of the spectral line amplitudes around 4 kHz under different embedding dimensions

		ě			
d	6	10	14	18	22
幅值和	0.097	0.106	0.126	0.277	0.135

1.3 改进的辛几何模态分解方法

由于直接获得 SGMD 的最佳嵌入维数十分困 难,因此先定义预设嵌入维数的区间,再通过评价每 个嵌入维数下分解结果来选择最优的嵌入维数,其 具体步骤如下。

1) 在分解开始时,根据文献[15]进行优化,得 到嵌入维数区间为

$$\begin{cases}
d_{\min} = \left\lfloor \frac{f_s}{f_{\max}} \right\rfloor \\
d_{\max} = \left\lfloor \frac{f_s}{f_{\max}} k \right\rfloor \\
d_{\max} = m
\end{cases}$$
(14)

其中:fmax为功率谱密度中最大主峰对应的频率;[]

表示向下取整; k 为控制区间长度的参数; m 为嵌入 维数间隔。

实验中将*m*设为2,能在确保不遗漏最优嵌入维数的同时减少一半的计算量(d_{min} 为奇数时,则从 d_{min} +1开始搜索)。在最差情况下 f_{max} 为 $f_s/2$, $d_{min} = 2$,所有子分量被压缩成一个二维矩阵,而通常由轴承故障引起的共振频率两侧都会有调制分量出现,因此不可能提取出故障特征分量。在SGMD分解过程中,由于每个频率分量都会对应2个紧密排列的Hamilton矩阵特征值^[16-17],因此*k*至少为3, d_{max} 至少为6才能避免最坏的情况发生。为了避免最佳嵌入维数被截断在区间外,建议*k* = 6以保证预设区间包含最佳的嵌入维数。

2)由于峭度是描述随机变量分布特性的数值 统计量,且能够反应信号冲击成分的大小,因此笔者 引入峭度来选择最佳嵌入维数

$$K = \frac{E(x-\mu)}{\sigma^4} \tag{15}$$

对每一个嵌入维数 d进行 SGMD 分解,得到一系列 SGC 分量。通过计算每个 SGC 分量的峭度值,筛选出当前嵌入维数下最优的 SGC_d分量。

3)为了避免模态混叠和过度分解现象,引入模态混叠指数^[8](mode mixing index,简称 MMI),即

$$MMI = \sum_{i=1}^{T} A_{f_{\tau}} / \sum_{j=1}^{N} A_{f_{N}}$$
(16)

其中:T为分解后SGC故障特征所在频带的谱线总数;N为分解后SGC整个频带的谱线数; A_{f_r} 和 A_{f_N} 分别为 f_r 和 f_N 对应的幅值。

当发生模态混叠时,故障特征频率会分散在其他 模态分量中,模态混叠越大,MMI将越趋于0。同时, MMI也能够反映SGC分量受到其他模态干扰情况。

SGC 主频附近对应的幅值可以反映过度分解 情况,但在实际中主频准确值难以确定,因此参考经 验小波变换^[18](empirical wavelet transform,简称 EWT)划分频带,将分解前后故障特征频带总幅值 变化作为判断过度分解的依据。分解后,若SGC_d 分量故障特征与原始信号故障特征的频带幅值之比 越大,则过度分解越小。因此,定义过度分解指数 (excessive decomposition index,简称EDI)为

$$\mathrm{EDI} = \sum_{k=1}^{P} A_{f_{\mathrm{soc}}} / \sum_{l=1}^{O} A_{f_{x}}$$
(17)

其中:P为分解得到的SGC_d分量冲击故障所在频带的谱线总数;O为原始信号中冲击故障所在频带的 谱线总数;A_{fsc}和A_{fs}分别为f_{scc}和f_s对应的幅值。 为了避免模态混叠和过度分解,同时保证能够 提取到故障冲击成分,将模态混叠指数、过分解指数 和峭度值的乘积作为综合评估目标函数值(object function value,简称 OFV)进行综合评价,以此选择 最佳嵌入维数。OFV最大的 SGC_M对应的嵌入维 数即为最佳嵌入维数,即

$$OFV = K \cdot MMI \cdot EDI$$
(18)

2 拉马努金周期变换

为了抑制 SGC 的噪声和谐波干扰并增强冲击特征,引人拉马努金周期变换对分解后的敏感 SGC 分量进行特征增强。对于离散振动信号 *x*= *x*₁,*x*₂, …,*x*_n,给定一个精确周期 *q*。

1) 计算信号的拉马努金和构造周期 q 所对应的 拉马努金子空间 S_q和正交投影矩阵 Z_q。拉马努金 子空间是基于拉马努金和构建的,文献[18]提供了 一种拉马努金和的简便计算方法。

2)根据文献[14]进行拉马努金周期变换:①构 建与周期相关的拉马努金子空间和正交投影矩阵; ②基于投影矩阵,将信号投影到拉马努金子空间,得 到周期性的投影信号;③将信号分块处理,计算每个 分块的平均值,投影到拉马努金子空间,最终获得增 强后的信号。

3 基于 ISGMD-RPT 的故障诊断方法

3.1 ISGMD-RPT方法

笔者提出的 ISGMD-RPT 故障诊断流程如图 4 所示。

$$q = \lceil f_s / f \rceil \tag{19}$$

其中:q为计算 RPT 的精确周期;f,为采样频率;f为 最优 SGC_a分量的包络谱的故障频率;f]表示向上 取整。

3.2 仿真分析

将提出的 ISGMD 方法用于式(13)的仿真信 号,根据信号的功率谱密度得到最大主峰对应的频 率 $f_{max} = 3 \text{ kHz}, 通过式(14)计算出 <math>d_{min} = 6, d_{max} =$ 32。图 5为 ISGMD 在不同嵌入维数下的目标函数 值,目标函数值在d = 18时达到了最大值。分解后 得到 6个改进辛几何分量(improve symplectic geometry component,简称 ISGC),前4个 ISGC 频域图 如图 6所示,其余的 ISGC 为无意义的噪声分量。从

Fig.4 ISGMD-RPT fault diagnosis flowchart

图 6 可以看到,分解结果没有发生模态混叠,2 kHz 和3 kHz的谐波分量被完全分离出来。

图 5 ISGMD 在不同嵌入维数下的目标函数值

图 7 为 ISGMD-RPT 结果包络谱。对 ISGC₃进 行 RPT 特征增强,从图 7(a)中提取出故障特征频率 *f*_o =90 Hz,计算得到精确周期 *q*=183。图 7(b)表 明,经过 RPT 特征增强的故障信号带内噪声被明显 抑制,基频和其倍频分量得到明显增强,噪声干扰降 到了最低。可见,RPT 在特征增强和噪声抑制方面 表现出色。

4 实 验

为验证 ISGMD-RPT 在实际情况下的效果,搭 建轴承故障实验台如图 8 所示。滚动轴承型号为 6205,轴承外径为 52 mm,内径为 25 mm,宽为 15 mm,有 13 个滚动体。采用线切割方法分别在内 圈和外圈加工出微小凹痕来模拟轴承故障状态,轴 承故障的伤痕为 0.05 mm×0.3 mm(深度×宽度), 滚动轴承故障类型如图 9 所示。利用 PCB MA352A60型加速度传感器分别采集垂直方向上 内圈故障和外圈故障的轴承振动信号。电机转速为 1 000 r/min,采样频率为 50 kHz,采样点数为 10 000。 根据轴承参数计算外圈和内圈故障频率分别为 90.2 Hz和 129.1 Hz。

图 8 轴承故障实验台 Fig.8 Bearing failure test bench

(a) 外國政障
 (b) 内國政障
 (c) 內國政障
 (c) 內國政策
 (c) 內國政策

4.1 轴承外圈故障诊断

外圈故障原始信号如图10所示。可以看出,轴 承外圈故障特征频率f。周围存在许多干扰谱线,难

以准确提取其故障特征频率和倍频。

将 EMD, LMD, SSD 和 SGMD 用于分析实验 故障信号, SSD 残差阈值设为 0.05, SGMD 延迟时 间为 1。图 11 为外圈故障下不同方法分解后敏感分 量包络谱。可以看出: EMD, LMD 和 SSD 分解后能 提取出故障特征频率 f_o, 但存在的大量噪声会干扰 故障特征频率和其倍频的识别; SGMD 分解结果能 够提取故障特征频率 f_o和其 2 倍频及 3 倍频, 但由于 噪声的干扰,导致嵌入维数选择不当, 分解时发生模 态混叠, 敏感 SGC 分量高频处存在噪声干扰, 故障 信息提取不足。

采用笔者提出的 ISGMD 方法对信号进行分解,根据信号的功率谱密度得到最大主峰对应的频

率 $f_{max} = 22$ 937.1 Hz,通过式(14)计算出 $d_{min} = 2$, $d_{max} = 13$ 。目标函数值在嵌入维数d = 8时达到最 大值。外圈故障下 ISGMD不同嵌入维数时的目标 函数值如图 12 所示。

图 12 外圈故障下 ISGMD 不同嵌入维数时的目标函数值 Fig.12 Objective function values of ISGMD with different embedding dimensions under in ring fault

为了进一步增强故障特征频率,对信号进行 RPT特征增强。根据ISGC1包络谱提取出的频率 为90 Hz,计算得到精确周期q=556。图13为外圈 故障下ISGMD-RPT结果包络谱。从图13(a)可以 看出,提出的ISGMD方法可以从包络谱中清晰地 提取出故障特征频率f₆以及2~8倍频,信号的干扰 分量大大减少,可见该方法具有更好的特征提取能 力。从图13(b)可以看出,经过RPT处理后的信号 故障特征频率f₆和其倍频十分明显,噪声几乎完全 去除,谐波干扰分量也被去除,高频部分的基频也能 提取出来,这说明RPT方法有着出色的特征增强 能力。

outer ring fault

4.2 轴承内圈故障诊断

内圈故障原始信号如图 14 所示。将 EMD, LMD,SSD和SGMD用于内圈故障信号分析,不同 方法分解后敏感分量包络谱如图 15 所示。可以看

到,EMD,LMD和SSD能提取出基频f和其2,3倍频,但高频附近由于噪声干扰,无法提取故障倍频。 从图15(d)可以看出,SGMD能够准确提取故障频 率f和其2,4,6倍频,但是在3,5倍频附近存在较高 峰值的谐波干扰,导致无法识别出准确的故障特征。

Fig.15 Envelope spectrum of sensitive components after decomposition by different methods under inner ring fault

对内圈故障信号进行 ISGMD 方法分解,根据 信号的功率谱密度得到最大主峰对应的频率 f_{max} = 2 617.8 Hz,通过式(14)得到 d_{min} =19, d_{max} = 114。 OFV在嵌入维数 d=42时达到最大值,内圈故障下 ISGMD不同嵌入维数时目标函数值如图 16所示。

对信号进行 RPT 特征增强,内圈故障下 ISGMD-RPT 结果包络谱如图 17 所示。分解得到 的敏感分量 ISGC₂包络谱如图 17(a)所示,可以清晰

图16 内圈故障下ISGMD不同嵌入维数时目标函数值

Fig.17 Envelope spectrum of ISGMD-RPT results under inner ring fault

地提取出内圈故障频率f,以及2~6倍频,且在3倍频 和5倍频附近的谐波干扰被大大降低。可见, ISGMD方法可以在很大程度上增强SGMD分解效 果。由图17(a)得到ISGC2包络谱提取出的频率为 129.4 Hz,计算得到精确周期q=387。从图17(b)可 知,经过RPT增强的信号完全去除了谐波干扰, ISGC2淹没在噪声中的7倍频也被准确提取出来,说 明RPT能够有效抑制噪声并增强故障特征。

5 结 论

1)研究了嵌入维数对辛几何模态分解能力的 影响,发现在SGMD方法中,过小的嵌入维数会导 致模态混叠,过大的嵌入维数会造成过度分解。

2)为了获得最优嵌入维数,通过预设嵌入维数 区间,并结合模态混叠指数、过分解指数和峭度对不 同嵌入维数的分解结果进行评价,从而得到最优嵌 入维数,提高了SGMD的分解能力。

 引入拉马努金周期变换对信号进行特征增强,仿真和实验证明了RPT在噪声抑制和特征增强 上具有优秀的效果。

4) 与传统 EMD, LMD, SSD 和 SGMD 相比, 笔

者提出的 ISGMD-RPT 方法在轴承内外圈故障特征提取中降噪效果更佳。

参考文献

- [1] 张韧.旋转机械故障特征提取技术及其系统研究[D]. 杭州:浙江大学,2004.
- [2] 刘湘楠,赵学智,上官文斌.强背景噪声振动信号中 滚动轴承故障冲击特征提取[J].振动工程学报, 2021,34(1):202-210.
 LIU Xiangnan, ZHAO Xuezhi, SHANGGUAN Wenbin. The impact features extraction of rolling bearing under strong background noise [J]. Journal of Vibration

Engineering, 2021, 34(1): 202-210.(in Chinese)

- [3] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903-955.
- [4] 陈凯,李富才,李鸿光.快速自适应经验模态分解方法 及轴承故障诊断[J].振动、测试与诊断,2016,36(4): 647-652.

CHEN Kai, LI Fucai, LI Hongguang. Rolling bearing fault diagnosis based on fast adaptive empirical mode decomposition[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(4): 647-652.(in Chinese)

 [5] 郑近德,程军圣,杨宇.基于LCD和排列熵的滚动轴 承故障诊断[J].振动、测试与诊断,2014,34(5): 802-806.

ZHENG Jinde, CHENG Junsheng, YANG Yu. A rolling bearing fault diagnosis method based on LCD and permutation entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(5): 802-806.(in Chinese)

- [6] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
- [7] BONIZZI P, KAREL J M H, MESTE O, et al. Singular spectrum decomposition: a new method for time series decomposition [J]. Advances in Adaptive Data Analysis, 2014, 6(4): 1450011.
- [8] MAO Y, JIA M, YAN X. A new bearing weak fault diagnosis method based on improved singular spectrum decomposition and frequency-weighted energy slice bispectrum[J]. Measurement, 2020, 166: 108235.
- [9] PAN H, YANG Y, LI X, et al. Symplectic geometry mode decomposition and its application to rotating ma-

chinery compound fault diagnosis [J]. Mechanical Systems and Signal Processing, 2019, 114: 189-211.

- [10] JIANG Y, CHEN W, LI M. Symplectic geometry decomposition-based features for automatic epileptic seizure detection[J]. Computers in Biology and Medicine, 2020, 116: 103549.
- [11] SETHARE W A, STALEY T W. Periodicity transforms [J]. IEEE Transactions on Signal Processing, 1999, 47(11): 2953-2964.
- [12] MURESAN D D, PARKS T W. Orthogonal, exactly periodic subspace decomposition[J]. IEEE Transactions on Signal Processing, 2003, 51(9): 2270-2279.
- [13] VAIDYANATHAN P P. Ramanujan sums in the context of signal processing, part I: fundamentals[J]. IEEE Transactions on Signal Processing, 2014, 62 (16) : 4145-4157.
- [14] VAIDYANATHAN P P. Ramanujan sums in the context of signal processing, part II: FIR representations and applications [J]. IEEE Transactions on Signal Processing, 2014, 62(16): 4158-4172.
- [15] YANG H, ZHANG A, LI G. A new singular spectrum decomposition method based on cao algorithm and amplitude aware permutation entropy[J]. IEEE Access, 2021, 9: 44534-44557.
- [16] CHEN Y Y, JIA M P, YAN X A. A bearing fault feature extraction method based on cepstrum pre-whitening and a quantitative law of symplectic geometry mode decomposition[J]. Journal of Southeast University, 2021, 37(1): 33-41.
- [17] GILLES J. Empirical wavelet transform [J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010.
- [18] DENG S W, HAN J Q. Ramanujan subspace pursuit for signal periodic decomposition[J]. Mechanical Systems and Signal Processing, 2017, 90: 79-96.

第一作者简介:李可,男,1978年1月生, 博士、教授、博士生导师。主要研究方向 为故障诊断与智能检测。曾发表《A novel fault diagnosis algorithm for rotating machinery based on a sparsity and neighborhood preserving deep extreme learing》 (《Neurocomputing》2019, Vol. 350)等 论文。

E-mail:like_jiangnan@163.com