DOI:10.16450/j.cnki.issn.1004-6801.2025.01.027

ADCP波浪参数水动力环境计量校准技术研究^{*}

贾伟广^{1,3}, 常怡婷², 孙 啸^{1,3}, 朱丽萍^{1,3}, 秦鑫培^{1,3} (1.国家海洋标准计量中心 天津,300112) (2.国家海洋技术中心 天津,300112) (3.自然资源部海洋计量检测技术创新中心 天津,300112)

摘要 针对声学多普勒剖面流速仪(acoustic Doppler current profilers,简称 ADCP)波浪三要素(波向、波高和波周 期)计量校准技术难题,提出了造波水槽和水下实验平台的计量检测方法。首先,设计波向、波高和波周期计量标准 器;然后,以美国 TRDI公司 V20型和挪威 Nortek 仪器为例,开展 ADCP 波浪参数水动力环境计量校准实验研究。 实验结果表明,波高、波周期和波向数据最大示值误差分别为一0.09 m,0.6 s和4°,满足国家相关技术标准要求。波 高扩展不确定度为 0.04 m,依据计量学理论,认为本校准方法可行。本研究成果对 ADCP 波浪参数计量校准工作具 有一定指导意义。

关键词 声学多普勒剖面流速仪;计量校准;波浪;水动力环境 中图分类号 TH71

引 言

波浪是海洋中最为普通的自然现象,属于海洋 水体的一种快速随机性运动^[1]。海洋波浪的无规律 性对海上航行、科考作业等活动带来巨大挑战。开 展海洋波浪的监测和预报,一直是人类认识、开发利 用海洋的重要任务之一^[2]。海浪理论经历了从复杂 波形到简单时域参数,再到复杂频域分析的过程^[3]。 波浪三要素由波高、波周期和波向组成^[4],波浪测量 方式有目测式、压力式、加速度式、地波雷达式和遥 感式等^[5],这些波浪测量方式在抗恶劣海况性、强鲁 棒性和全天候工作的实际需求等方面还存在一定 差距。

ADCP利用水体中散射体回波的多普勒频移和 延时获取水体数据^[6],具有恶劣海况可行和工作寿 命长久的优点,逐渐成为监测波浪数据重要设备^[7]。 为确保ADCP系统始终处于一个良好状态,对其定 期进行计量校准尤为重要^[8]。根据参数和用途不 同,校准项目主要分为海流和波浪2类。校准方法 分为水域校准和无水域校准。水域校准是在室内水 槽、露天水域开展校准比对工作;无水域校准是指运 用信号处理技术,从声信号调制解调源头进行计量 校准。研究者对海流参数的计量校准研究起步较 早,一般采用在大深度水域中通过实物船只进行^[9], 或利用长直线导轨行车拖动在明渠水槽进行,研究 技术已较为成熟。但是对 ADCP 波浪参数的计量 校准的研究不多,一般是将 ADCP 海底安装,与同 海域波浪浮标长期数据比对,此方式存在费用极高、 耗时久和组织协调繁琐的缺点。

针对上述问题,本研究团队研发水下转台,设计 波高、波周期和波向计量标准器,利用造波水槽提供 标准波浪水动力环境,进行 ADCP 波浪参数水动力 环境计量校准技术研究。

1 造波实验前设备情况

1.1 被校仪器测波原理

ADCP采用阵列法测量波浪,各波束在海表投影形成测量海表起伏的测点 $C_1 \sim C_5$,获取海表波浪场的空间测量阵列。图1为ADCP测波原理图,其测波步骤如下。

1) 获得测点 $C_1 \sim C_5$ 的波浪物理量(波高 h_k 、方位信息 θ_k 、离散时刻 t_k) n 次观测时间序列,记作 $C_{1h\theta t(k)} \sim C_{5h\theta t(k)}$,即

^{*} 自然资源部海洋观测技术重点实验室开放基金资助项目(2023klootA08);中国-东盟国家蓝色伙伴关系建设 (24-01-08-07);国家重点研发计划资助项目(2023YFF0611800);国家海洋技术中心科技创新基金资助项目 收稿日期:2024-03-26;修回日期:2024-05-29

ADCE

2) 根据维纳辛钦定理,分别对 $C_{1h\thetat(k)} \sim C_{5h\thetat(k)}$ 进 行离散傅里叶变换,提取各测点序列的自谱信息 $P_{1h\theta t}(\omega) \sim P_{5h\theta t}(\omega), \mathbb{R}^{1}$

$$\begin{cases} P_{1h\theta\ell}(\omega) = \sum_{k=-\infty}^{\infty} C_{1h\theta\ell(k)} e^{-j\omega k} \\ \vdots \\ P_{5h\theta\ell}(\omega) = \sum_{k=-\infty}^{\infty} C_{5h\theta\ell(k)} e^{-j\omega k} \end{cases}$$
(2)

3) 提取不同测点序列间的互谱信息 R_{i,m[htt(k)]}, 形成波浪测量阵列的交叉谱矩阵 $P_{i,m[htt]}(\omega)$,即

$$\boldsymbol{R}_{i,m[h\theta t(k)]} = E\left[\left(C_{i[h\theta t(k)]} - \overline{C}_{ih\theta t(k)}\right)\left(C_{m[h\theta t(k)]} - \overline{C}_{mh\theta t(k)}\right)\right]$$
$$(i = 1, 2, \cdots, 5; \ m = 1, 2, \cdots, 5; \ i \neq m)$$
$$(3)$$

$$\boldsymbol{P}_{i,m[h\theta\ell]}(\boldsymbol{\omega}) = \sum_{k=-\infty}^{\infty} \boldsymbol{R}_{i,m[h\theta\ell(k)]} \mathrm{e}^{-\mathrm{j}\boldsymbol{\omega}k}$$
(4)

其中: $\overline{C}_{ihdt(k)}$, $\overline{C}_{mhdt(k)}$ 分别为测点*i*,*m*的波浪参数的 数学期望值。

4) 设 k 为波浪传播方向的波数, k 为指示波向 的波数矢量。选用估计谱值与实际谱值方差最小的 扩展最大似然法 (extended maximum likelihood method,简称 EMLM)算法估计波浪方向谱 $S(k, \omega)$

$$D(\boldsymbol{k}, \boldsymbol{\omega}) = \left\{ \boldsymbol{R}_{1,m}(\boldsymbol{k}, \boldsymbol{\omega}), \cdots, \boldsymbol{R}_{i,m}(\boldsymbol{k}, \boldsymbol{\omega}) \right\}^{\mathrm{T}}$$
(5)

$$S(k,\omega) = \frac{\alpha}{D(k,\omega)^{\mathrm{T}} [P_{i,m[h\theta\iota]}(\omega)]^{-1} D(k,\omega)}$$
(6)

对波浪方向谱进行傅里叶反变换,得到有效波 高、有效波周期和主波向等时域信息。

为体现研究先进性、实效性和普适性,选用美国 TRDI公司 V20型和挪威 Nortek 公司仪器各 2 台开

图 2 TRDI公司 ADCP Fig.2 ADCP of TRDI company

表1 TRDI公司ADCP性能

Tab.1 ADCP technical performance table of TRDI company

_		
序号	参数	数值
1	主频/kHz	983.04
2	波向精度/(°)	2
3	波高精度/cm	8
4	波周期精度/s	1.0

图 3 Nortek 公司仪器 Fig.3 Nortek company instruments

表2 Nortek公司仪器性能

Tab.2 Technical performance table of Nortek instruments

序号	参数	数值
1	主频/kHz	400
2	波向精度/(°)	2
3	波高精度/cm	5
4	波周期精度/s	1.0

1.2 造波水槽、计量标准器情况

选用国家海洋技术中心2种尺寸的造波水槽,

2种水槽均可提供水体高精度波浪场环境,大造波水 槽长为130m、宽为18m、深为5m,造波范围0.02~ 0.6m,波周期范围1~5s。大造波水槽如图4所示。

图 4 大造波水槽 Fig.4 Large wave making tank

小水槽长为75m、宽为1.6m、水深为1.2m,造 波范围0.02~0.4m,波周期范围0.5~5.0s。小造波 水槽如图5所示。

图 5 小造波水槽 Fig.5 Small wave making tank

与3种波浪参数对应,计量标准器包含3种仪器:定制全角度铝盘、电容式浪高仪和高精度频率 计,可以给出波浪场高精度的波向、波高和波周期数 值,计量标准器最大允许误差分别为±1°,±0.01 m 和0.1 s,并且这些值可以溯源到中国计量科学研究 院等法定计量机构。部分计量标准器如图6所示。

图 6 部分计量标准器 Fig.6 Part measuring standard

1.3 水下转台情况

实验时,需将TRDI和Nortek公司的仪器分别放置在水槽底部,为了评价ADCP波向测量性能,将ADCP沿竖直中心轴转动。为实现该目标,研制水下转台。水下转台带有360°刻度,分度角为1°,内置气动

轴承部件,可带动ADCP水平转动,每次转动角度为 30°,还可以调节ADCP放置在平面的水平角度,确保 ADCP中轴线竖直向上,满足倾斜角度要求。

2 计量校准过程和结果分析

2.1 计量校准过程

2024年1月22日至25日,笔者开展了2台 TRDI公司ADCP(出厂编号分别为510,511)波浪 参数计量校准实验。2024年5月28日,开展了2台 Nortek仪器波浪参数计量校准实验。实验顺序为先 小水槽、后大水槽。图7为计量校准流程图。

Fig.7 Flow chart of measurement and calibration

实验步骤如下。

1) 在造波水槽边缘区域,连接ADCP的供电线 缆和数据线缆;将ADCP固定在水下转台的铝制圆 盘平面上,两者成一体;用气管连接空压机和气动阀 门,设置每次进气量,调配轴承部件,确保ADCP运 转顺畅无阻。

2)利用起重吊机将带 ADCP 的水下转台放置 在水槽底面,调节四角旋柱,确保 ADCP 换能器竖 直向上。造波水槽底部放置过程如图 8 所示。

3) 启动造波系统,连续输出100个规则波,形成标准波浪水动力环境。大小水槽造波参数如表3所示。同时,启动ADCP和计量标准器数据采集程序,获取同时刻的波浪数据。

		表 3	大小7	水槽造	波参	数		
Tab.3	Wave	parame	eters o	f big	and	small	water	tanks

水槽类型	波	高	波周期				
小帽矢型	范围/m	精度/cm	范围/s	精度/s			
大水槽	0.02~0.6	2.4	$1.0 \sim 5.0$	0.02			
小水槽	0.02~0.4	1.6	0.5~5.0	0.02			

4) 完成实验后,关闭参试设备并恢复原状。

2.2 计量校准结果分析

2.2.1 2台ADCP测波性能结果分析

先进行小造波水槽实验结果分析,波高 H 和波 周期 T 实验点对分别为(0.15 m, 2.0 s),(0.20 m, 3.0 s),(0.35 m, 4.0 s)。2台 ADCP分别采集多组数 据,通过数据分析运算获得2台 ADCP测量波高最 大误差为0.04 m,波周期和波向最大误差分别为 0.8 s 和波向3.0°,小造波水槽概率密度曲线和分布 直方图如图9所示。表4为小造波水槽2台 ADCP 部分实验数据。

(a) 计量标准器波高测得数值概率密度函数和直方图(a) The numerical probability density function and histogram are obtained by measuring the wave height of th standard

表4 小造波水槽2台ADCP部分实验数据

Tab.4	Part	experimental	data	of	two	ADCP	in	small
	wave	making tank						

LT #H	마구지	ADCP	(510)	ADCP	(511)	仪器	误差
口旁	叫刻	H/m	t/s	H/m	t/s	H/m	t/s
2024-01-23	10:00	0.32	4.0	0.33	4.6	0.01	0.6
2024-01-23	10:20	0.33	4.0	0.32	4.2	0.01	0.2
2024-01-23	10:40	0.34	4.1	0.38	4.3	0.04	0.2
2024-01-23	11:00	0.33	4.1	0.35	4.6	0.02	0.5
2024-01-23	11:20	0.33	4.0	0.34	4.7	0.01	0.7
2024-01-23	11:40	0.32	4.0	0.34	4.8	0.02	0.8
2024-01-23	12:00	0.32	4.1	0.35	4.5	0.03	0.4

进行大水槽实验时,波高和波周期实验点对分别 为(0.15 m,2.0 s),(0.30 m,4.0 s),(0.50 m,5.0 s),数 据处理过程与小水槽相同,获得2台ADCP测量波高 最大误差为0.08 m,波周期和波向最大误差分别为 0.8 s和波向3.0°。大造波水槽概率密度曲线和分布直 方图如图10所示。表5为大造波水槽两台ADCP部 分实验数据,大部分数据满足产品说明书要求。

Fig.10 Probability density curve and distribution histogram in large wave generating tank

表 5 大造波水槽 2 台 ADCP 部分实验数据 Tab.5 Part experimental data of two ADCP in large wave generating tank

口曲	마구 호미	ADCP	(510)	ADCP	(511)	仪器	误差
日労	цЛ XI	H/m	t/s	H/m	t/s	H/m	t/s
2024-01-23	14:00	0.54	5.2	0.50	5.3	0.04	0.1
2024-01-23	14:20	0.55	5.3	0.52	5.4	0.03	0.1
2024-01-23	14:40	0.52	5.3	0.53	5.1	0.01	0.2
2024-01-23	15:00	0.52	5.7	0.51	5.0	0.01	0.7
2024-01-23	15:20	0.56	5.3	0.48	5.1	0.08	0.2
2024-01-23	15:40	0.54	5.1	0.52	5.2	0.02	0.1
2024-01-23	16:00	0.50	4.9	0.51	4.6	0.01	0.3

2.2.2 计量校准示值误差结果分析

小水槽实验时,先计算2台ADCP数据平均值, 作为被校准ADCP数值,将被校准ADCP数值与计 量标准器数值进行运算,获得被校准ADCP波高最 大示值误差为0.04m;另外,获得周期和波向最大示 值误差分别为0.3s和4°。小造波水槽计量校准部 分实验数据如表6所示。

大水槽实验数据分析过程同小水槽,获得 AD-CP 波高、周期和波向最大示值误差分别为 -0.09 m,0.6 s和4°,表7为大造波水槽 V20型 AD-CP 计量校准部分实验数据。表8为大造波水槽 Nortek AWAC 计量校准部分实验数据。实验数据

表6 小造波水槽计量校准部分实验数据

Tab.6	Part	measurement	and	calibration	experimental	data	of	small	wave	making	tank	
-------	------	-------------	-----	-------------	--------------	------	----	-------	------	--------	------	--

日期	时刻		计量标准器		ŕ	波校准 ADCI	Р		仪器误差	
口刑	可到刻	波高/m	波周期/s	波向/(°)	波高/m	波周期/s	波向/(°)	波高/m	波周期/s	波向/(°)
2024-01-24	09:00	0.34	4.0	61	0.33	4.3	65	-0.01	0.3	4
2024-01-24	09:20	0.35	4.2	61	0.34	4.3	64	-0.01	0.1	3
2024-01-24	09:40	0.35	4.3	61	0.34	4.2	65	-0.01	-0.1	4
2024-01-24	10:00	0.34	4.1	90	0.35	4.2	92	0.01	0.1	2
2024-01-24	10:20	0.33	4.2	90	0.34	4.3	92	0.01	0.1	2
2024-01-24	10:40	0.32	4.3	90	0.33	4.4	93	0.01	0.1	3
2024-01-24	11:00	0.31	4.4	122	0.35	4.3	125	0.04	-0.1	3

表7 大造波水槽 V20型 ADCP 计量校准部分实验数据

Tab.7 V20 ADCP part measurement calibration experimental data of large wave generating tank

口 #田	时刻		计量标准器			波校准 ADCl	Р	仪器误差			
口刑	山刻	波高/m	波周期/s	波向/(°)	波高/m	波周期/s	波向/(°)	波高/cm	波周期/s	波向/(°)	
2024-01-24	15:40	0.54	5.1	61	0.50	5.3	61	-0.04	0.2	0	
2024-01-24	16:00	0.53	5.3	61	0.51	5.2	62	-0.02	-0.1	1	
2024-01-24	16:20	0.59	5.3	92	0.50	5.2	93	-0.09	-0.1	1	
2024-01-24	16:40	0.54	5.2	92	0.48	5.1	93	-0.06	-0.1	1	
2024-01-24	17:00	0.56	5.3	120	0.49	5.8	124	-0.07	0.5	4	
2024-01-24	17:20	0.55	5.2	120	0.49	5.6	124	-0.06	0.4	4	

表8 大造波水槽 Nortek AWAC 计量校准部分实验数据

Tab.8	Nortek AWAC	part measurement	calibration	experimental	data	of	large	wave	generating	tank
-------	-------------	------------------	-------------	--------------	------	----	-------	------	------------	------

口 #田	마구 회		计量标准器		1	波校准ADC]	Р	仪器误差			
日刑	时刻	波高/m	波周期/s	波向/(°)	波高/m	波周期/s	波向/(°)	波高/cm	波周期/s	波向/(°)	
2024-05-28	09:40	0.31	4.1	60	0.32	4.1	62	0.01	0	2	
2024-05-28	10:00	0.29	4.0	61	0.39	4.3	62	0.10	0.3	1	
2024-05-28	10:20	0.32	4.0	90	0.30	4.2	92	-0.02	0.2	2	
2024-05-28	10:40	0.31	4.1	90	0.29	4.1	93	-0.02	0	3	
2024-05-28	11:00	0.33	3.9	90	0.32	4.1	91	-0.01	0.2	1	
2024-05-28	11:20	0.30	4.0	121	0.31	4.5	123	0.01	0.5	2	
2024-05-28	11:40	0.32	4.0	121	0.32	4.1	124	0.00	0.1	3	
2024-05-28	12:00	0.31	4.1	150	0.33	4.1	152	0.02	0	2	
2024-05-28	12:20	0.31	4.0	150	0.35	4.0	155	0.04	0	5	

都满足我国相关技术要求。

2.2.3 计量校准的不确定度分析与评价

为更好地评价校准结果的质量水平,定量说明 各相关因素引入的不确定度分量,利用国家技术文 件《JJF 1059.1-2012 规程测量不确定度评定与表 示》分析校准结果的测量不确定度。本研究中测量 对象是波浪运动过程,测量装置分别是 ADCP 和计 量标准器,测量参数是波高、波周期和波向。

以波高参数为例完成不确定度分析评价工作。 波高测量结果是 ADCP 和计量标准器的示值误差 ΔE 。示值误差 ΔE 不能直接测得,只能由 ADCP 波 高变量 V_s 和计量标准器波高 V_B 通过函数关系 f 得 到,数学模型为

$$\Delta V = f(V_{\rm A}, V_{\rm S}) = V_{\rm A} - V_{\rm S} \tag{7}$$

在实际测量波高过程中,波高绝对值是未知的。为评价测量结果的不确定度,选用ADCP变量 V_A 和计量标准器 V_s 的估计值,即波高测量值,分别为 v_{Ai} 和 v_{Si} ,此时 ΔV 的估计值记作 ΔV_i ,计算式为

$$\Delta V_i = v_{Ai} - v_{Si} \tag{8}$$

波高测量不确定度传播律为

$$u^{2}(\Delta V_{i}) = \left(\frac{\partial \Delta V_{i}}{\partial w_{Si}}\right)^{2} u^{2}(w_{Ai}) + \left(\frac{\partial \Delta V_{i}}{\partial w_{Ai}}\right)^{2} u^{2}(w_{Si}) = c_{1}^{2} u^{2}(w_{Ai}) + c_{2}^{2} u^{2}(w_{Si})$$
(9)

其中:灵敏系数 $c_1 = \frac{\partial \Delta V_i}{\partial w_{Si}} = 1.00, c_2 = \frac{\partial \Delta V_i}{\partial w_{Ai}} = 1.00_{\circ}$

将式(9)简化可得

$$u^{2}(\Delta V_{i}) = u^{2}(w_{Ai}) + u^{2}(w_{Si})$$
(10)

由图9,10可知,波高数据分布具有区域聚集性,符合重复性条件,故采用A类评定,利用贝塞尔 公式计算标准不确定度u(w_{Ai})为

$$u(w_{Ai}) = \sqrt{\frac{\sum_{i=1}^{n} (w_{Ai} - \overline{w}_{Ai})}{n-1}} = 0.02 \,\mathrm{m} \quad (11)$$

其中: $n = 10_{\circ}$

得到自由度 $\nu_{ws_i} = n - 1 = 9$;自由度 $\nu_{w_{s_i}} = \infty$ 。

 $u(w_{Si})$ 标准不确定度评定如下:计量标准器电容式 浪 高 仪 经 计 量 校 准(证书编号 HBJ-TID2023023T),其扩展不确定度均为 $U_{RM} = 0.02 \text{ m}, (k=2),$ 选用B类评定,可得标准不确定度 $u(w_{Si}) = U_{RM}/k = 0.01 \text{ m},$ 故自由度 $\nu_{w_{Si}} = \infty$ 。

至此完成波高标准不确定度分析如表9所示。

$$\nu_{c} = \frac{u_{c}^{4}}{\frac{u(w_{Ai})^{4}}{\nu_{w_{Ai}}} + \frac{u(w_{Si})^{4}}{\nu_{w_{Si}}}}$$
(12)

表9 波高标准不确定度分析

Tab.	.9	Summary	of	sources	of	standard	uncertainty	ÿ

序号	标准不确定度	自由度			
	来源	参数/ m	数值	参数	数值
1	ADCP测量波高时引入	$u(w_{Ai})$	0.02	$\nu_{w_{Ai}}$	9
2	电容式浪高仪测波高时引入	$u(w_{Si})$	0.01	$\nu_{w_{Si}}$	∞

在合成标准不确定度计算方面,利用式(10)可 得合成标准不确定度 $u_c = 0.022 \text{ m}$,用式(12)得到合 成自由度 $\nu_c = 9$ 。

因为2项标准不确定度来源之间相互独立,所 以可用t分布计算。取置信概率p = 95%,已知自由 度 $\nu_c = 9$,可确定包含因子 $k = t_p(\nu_c) = 1.83$ 。扩展 不确定度 U_b 的计算公式为

$$U_h = k u_c = 0.04 \,\mathrm{m}$$
 (13)

ADCP波高参数水动力环境计量校准测量结果 扩展不确定度 $U_h = 0.04 \text{ m}, k = 1.83$ 。ADCP和计量标准器匹配点位如图11所示。

Fig.11 Extended uncertainty diagram of ADCP measurement calibration

同理,可计算得出 ADCP 波周期和波向参数水 动力环境计量校准测量结果扩展不确定度分别为 $U_t = 0.4$ s,k = 1.83, $U_{\theta} = 3^{\circ}$,k = 1.72。

3 结束语

开展 ADCP 计量校准新技术研究,包括实验装 置研发、实验过程统筹、数据相关性、示值误差和不 确定度分析评价等方面。研究结果表明:同型号 ADCP 数据示值误差较小,相关性较好;与造波水槽 计量标准器相比,TRDI公司 ADCP 波高、波周期和 波向数据最大示值误差分别为-0.09 m,0.6 s和4°, Nortek AWAC 波高、波周期和波向数据最大示值误 差分别为0.10 m,0.5 s和5°,2个厂家产品技术性能 基本相同,都满足国家标准技术要求。波高计量校 准结果扩展不确定度为0.04 m,认为采用实验造波 水槽检定校准ADCP的方法可行,计量校准技术可 提升ADCP产品波浪参数数据质量。需要进一步 加大测试台数和次数,开展国内外其他厂家相关产 品测试工作,进一步确认计量校准技术可靠性和普 适性。另外,需求证ADCP主频和盲区之间的内在 联系,尽量增大测量水域和层数,提升计量校准科学 性和适用性。

参考文献

- [1] 唐厂,王楠楠,何改云,等.波浪浮标数据处理算法研究[J]. 计量学报,2013,34(4):315-319.
 TANG Chang, WANG Nannan, HE Gaiyun, et al. Study on wave buoy data processing algorithm[J]. Acta Metrologica Sinica, 2013, 34(4):315-319. (in Chinese)
- [2] 吴鑫.波浪浮标的波向测量改进算法研究[D].哈尔 滨:哈尔滨工程大学,2020.
- [3] 贾伟广,常双,程绍华,等.北斗浮标现场原位计量比 对研究[J]. 测控技术, 2021, 40(3): 34-38, 134.
 JIA Weiguang, CHANG Shuang, CHENG Shaohua, et al. Metrological comparison in-situ site of Beidou buoy[J]. Measurement & Control Technology, 2021, 40(3): 34-38, 134. (in Chinese)
- [4] 贾伟广,朱丽萍,秦鑫培,等.海气界面观测浮标现场
 原位校准技术研究[J].计量学报,2020,41(12):
 1576-1582.

JIA Weiguang, ZHU Liping, QIN Xinpei, et al. The research on ln-situ calibration technology of air-sea interface observation buoy [J]. Acta Metrologica Sinica, 2020, 41(12): 1576-1582. (in Chinese)

 [5] 王绿卿, 冯卫兵, 唐筱宁, 等. 中国大陆沿岸波浪能分 布初步研究[J]. 海洋学报, 2014, 36(5): 1-7.
 WANG Luqing, FENG Weibing, TANG Xiaoning, et al. Prelimernary study on wave energy potential assessment along China mainland [J]. Acta Oceanologica Sinica, 2014, 36(5): 1-7.(in Chinese)

 [6] 陈爱国,叶家玮,李志忠,等.波浪检测与特性参数分析试验研究[J].广州航海高等专科学校学报,2010, 18(3):15-18.

CHEN Aiguo, YE Jiawei, LI Zhizhong, et al. An analysis on the experiment result of sea waves' testing and feature data [J]. Journal of Guangzhou Maritime College, 2010, 18(3): 15-18. (in Chinese)

- [7] MIAO Y J, DONG X L, BOURASSA M A, et al. Effects of ocean wave directional spectra on doppler retrievals of ocean surface current[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
- [8] 谢慧,柳义成,张明敏.声学多普勒流速剖面仪计量 测试系统设计[J].仪表技术与传感器,2020(10): 68-72.

XIE Hui, LIU Yicheng, ZHANG Mingmin. Design of acoustic doppler current profiler calibration system [J]. Instrument Technique and Sensor, 2020(10): 68-72. (in Chinese)

[9] 刘建遥, 焦君圣, 郭世旭, 等. 基于回波模型仿真的 ADCP实验室校准中波束间干扰研究[J]. 计量学报, 2023, 44(12): 1847-1855.

LIU Jianyao, JIAO Junsheng, GUO Shixu, et al. Research on inter-beam interference in ADCP laboratory calibration based on echo model simulation [J]. Acta Metrologica Sinica, 2023, 44(12): 1847-1855. (in Chinese)

第一作者简介:贾伟广,男,1981年10月 生,本科、正高级工程师。主要研究方向 为海洋波浪潮汐气象计量检测。 E-mail:weiguang@ncosm.org.cn