DOI:10.16450/j.cnki.issn.1004-6801.2025.02.007

基于 CNN-LSTM-Attention 的风电机组状态监测 与健康评估^{*}

朱岸锋¹, 赵前程¹, 周 凌^{1,2}, 杨天龙¹, 阳雪兵³ (1.湖南科技大学机电工程学院 湘潭,411201) (2.湖南工业大学电气与信息工程学院 株洲,412002) (3.哈电风能有限公司 湘潭,411102)

摘要 针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的 状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称 SCADA)系统数据进行预处理;其次,将卷积神经网络(convolutional neural networks,简称CNN)和长短期记忆网 络(long short-term memory,简称LSTM)相结合提取数据的时空特征,并引入注意力机制(Attention)为LSTM分 配相应的权重;然后,利用指数加权移动平均来设置阈值,通过分析均方根误差实现风电机组的状态监测;最后,通 过实例对风电机组的主轴承、发电机定子和叶片变桨电机状态进行监测分析和健康评估,验证该方法的有效性。

关键词 风电机组;数据采集与监控系统;神经网络;状态监测;健康评估 中图分类号 TM315

引 言

随着能源需求日益增大,风能作为重要的清洁 能源,发挥着越来越重要的作用^[1]。由于复杂多变 的工作环境,风电机组关键部件如主轴承、齿轮和发 电机等容易发生故障,带来较高的维护成本和运营 费用^[2]。因此,对风电机组进行状态监测^[3-5]和健康 评估^[6]十分必要。SCADA系统采集了大量参数,包 括风速、风向、温度、功率、电流和电压等。如果能够 提取出这些数据之间隐含的特征,就可以监测风电 机组的运行状态,预测早期故障^[7-8]。传统算法在处 理大量数据时存在收敛速度慢、预测精度低等问题, 而深度学习可以加快收敛过程和提高预测精度。近 年来,深度学习在状态监测领域得到了广泛应用^[9]。

CNN和LSTM方法在状态监测领域得到了大量应用,但单独使用其中的一种方法会忽略SCA-DA数据中的时间或空间特征,将CNN和LSTM方 法相结合可以充分提取这些特征。注意力机制可以 通过分配权重优化网络,提高模型的精度。因此,笔 者将CNN-LSTM方法用于状态监测,提出了一种 基于 CNN-LSTM-Attention 的风电机组状态监测和 健康评估方法。该方法将预处理后的 SCADA 数据 经 过 相 关 性 分 析 作 为 输 入 变 量,通 过 CNN 和 LSTM 分别提取隐藏在数据中的空间和时间特征, 结合注意力机制提高模型精度;利用指数加权移动 平均来监测风电机组运行状态,并用模糊综合评价 对风电机组进行健康评估。

1 数据预处理

1.1 四分位法

四分位法是一种统计学方法,四分位数通过将 排序后的数据平均划分为4个部分的3个数据点。 对于一个升序排列的样本,四分位法的计算步骤 如下。

1) 计算第2个四分位数即中位数Q₂

$$Q_{2} = \begin{cases} x_{\frac{n+1}{2}} & (n=2k+1) \\ \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n+2}{2}} \right) & (n=2k) \end{cases}$$
(1)

^{*} 国家重点研发计划资助项目(2022YFF0608700);国家自然科学基金资助项目(51875199);湖南省教育厅青年资助项目(22B0590) 收稿日期:2023-05-10;修回日期:2023-05-31

当
$$n = 4k + 1(k = 0, 1, ...)$$
时,有

$$\begin{cases}
Q_1 = 0.25x_k + 0.75x_{k+1} \\
Q_3 = 0.25x_{3k+1} + 0.75x_{3k+2}
\end{cases}$$
(3)

通过计算出的Q1和Q3,可以得到四分位距为

$$I_{QR} = Q_3 - Q_1 \tag{4}$$

根据
$$I_{QR}$$
可以确定数据样本中异常值的内限为
 $[F_1, F_n] = [Q_1 - 1.5I_{QR}, Q_3 + 1.5I_{QR}]$ (5)

1.2 参数选择

皮尔逊相关系数r可用于衡量两个变量之间的 相似程度,相关系数越大,两变量的相关性越强;反 之相关性越弱。其计算公式为

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$
(6)

其中: \overline{X} 为X的平均值; \overline{Y} 为Y的平均值;n为样本数。

2 风电机组状态监测与健康评估模型

2.1 卷积神经网络

CNN的权重共享和局部连接结构可以有效地 从数据中提取深层次特征,同时最小化算法的复杂 性^[10]。CNN主要由卷积层、池化层和全连接层构 成,通过卷积层、池化层和全连接层的交替使用,以 获得原始序列数据中的特征。CNN结构见图1。

2.2 长短期记忆网络

CNN 对时间序列的时间特征不敏感,而 LSTM能更好地融合不同部分状态的时间特征^[11], 其独特的结构能够解决循环神经网络训练过程中的 梯度消失问题。LSTM结构见图2。其计算公式为

$$f_{t} = \sigma (W_{fx} x_{t} + W_{fh} h_{t-1} + b_{f})$$
(7)

$$i_{t} = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{i})$$
(8)

$$g_{i} = \tanh(W_{gx}x_{i} + W_{gh}h_{i-1} + b_{g})$$
(9)

$$O_{t} = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{o})$$
(10)

$$C_t = g_t i_t + C_{t-1} f_t \tag{11}$$

$$h_t = \tanh(C_t)O_t \tag{12}$$

其中:W为权值;b为偏置;h_{t-1}为上一时刻的中间状态;x_t为当前时刻的输入;f_t为遗忘门的输出;i_t,O_t分别为输入、输出门的输出;g_t为输入节点的输出;输出变量包括单元状态C_t和中间状态h_t。

2.3 注意力机制

在 LSTM 中使用 Attention 来加强对输出变量的影响,从而提高方法的准确性。其计算公式为

$$e_i = u \tanh(wh_i + b) \tag{13}$$

$$a_i = \exp(e_i) / \sum_{i=1}^{t} \exp(e_i)$$
(14)

$$C = \sum_{i=1}^{l} a_i h_i \tag{15}$$

其中: h_i 为LSTM层t时刻的输出;b为偏置系数; w为权重系数;C为注意力层t时刻的输出。

2.4 基于模糊评判的健康评估

针对风电机组的健康状态评估,将评估结果划为4个等级: $L = \{l_1, l_2, l_3, l_4\}$,分别对应健康、良好、 注意和故障。选择三角形和半梯形相结合分布隶 属度函数,主轴承的健康状态等级隶属度函数为

$$l_{1} = \begin{cases} 1 & (\beta < 1.37) \\ \frac{1.55 - \beta}{1.55 - 1.37} & (1.37 \leq \beta < 1.55) \\ 0 & (\beta \ge 1.55) \end{cases}$$
(16)

$$l_{2} = \begin{cases} 0 & (\beta < 1.37) \\ \frac{\beta - 1.37}{1.55 - 1.37} & (1.37 \leqslant \beta < 1.55) \\ \frac{2.12 - \beta}{2.12 - 1.55} & (1.55 \leqslant \beta < 2.12) \\ 0 & (\beta \geq 2.12) \\ 0 & (\beta \geq 2.12) \\ 0 & (\beta \geq 2.12) \\ 1 & (\beta \geq 1.55) \\ \frac{\beta - 1.55}{2.12 - 1.55} & (1.55 \leqslant \beta < 2.12) \\ \frac{5.62 - \beta}{5.62 - 2.12} & (2.12 \leqslant \beta < 5.62) \\ 0 & (\beta \geq 1.86) \\ 1 & (\beta < 1.02) \\ 1 & (\beta \geq 1.86) \\ 1 & (\beta < 1.02) \\ 1 & (\beta \geq 8.27) \\ 0 & (\beta \geq 8.27) \\ 1 & (\beta \leq 1.86) \\ \frac{\beta - 1.86}{8.27 - 1.86} & (1.86 \leqslant \beta < 8.27) \\ 1 & (\beta \geq 13.64) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 13.64) \\ 0 & (\beta \geq 3.40) \\ 1 & (\beta \geq 1.62) \\ \frac{\beta - 1.62}{3.40 - 1.62} & (1.62 \leqslant \beta < 3.40) \\ 1 & (\beta \geq 1.62) \\ \frac{\beta - 1.62}{3.40 - 1.62} & (1.62 \leqslant \beta < 3.40) \\ 1 & (\beta \geq 1.62) \\ \frac{\beta - 1.62}{3.40 - 1.62} & (1.62 \leqslant \beta < 3.40) \\ 1 & (\beta \geq 1.62) \\ \frac{\beta - 1.62}{3.40 - 1.62} & (1.62 \leqslant \beta < 3.40) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \leqslant 10.08) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \leqslant \beta < 10.08) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \leqslant \beta < 10.08) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \leqslant \beta < 10.08) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \leqslant \beta < 10.08) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \leqslant \beta < 10.08) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \le \beta < 10.08) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \le \beta < 10.08) \\ 1 & (25) \\ \frac{\beta - 1.62}{10.08 - \beta} & (3.40 \le 10.08) \\ 1 & (25) \\ 1 & (25) \\ 1 & (25) \\ 1 & (25) \\ 1$$

 $(\beta \ge 10.08)$

0

$$l_{3} = \begin{cases} 0 & (\beta < 3.40) \\ \frac{\beta - 3.40}{10.08 - 3.40} & (3.40 \leqslant \beta < 10.08) \\ \frac{13.14 - \beta}{13.14 - 10.08} & (10.08 \leqslant \beta < 13.14) \\ 0 & (\beta \ge 13.14) \end{cases}$$
(26)
$$l_{4} = \begin{cases} 0 & (\beta < 10.08) \\ \frac{\beta - 10.08}{13.14 - 10.08} & (10.08 \leqslant \beta < 13.14) \\ 1 & (\beta \ge 13.14) \end{cases}$$
(27)

3 CNN-LSTM-Attention 模型的建立

3.1 模型结构

基于 CNN 和 LSTM 分别提取空间特征和时间 特征的优点以及注意力机制的权值分配,建立 CNN-LSTM-Attention 预测模型。该模型结构如 图 3 所示,由输入层、CNN 层、LSTM 层、注意力层 和输出层组成。首先,CNN 提取原始数据的空间特 征,并将其作为 LSTM 网络的输入;其次,通过 LSTM 提取时间特征,将结果输入到注意力层;最 后,注意力层根据输入数据计算权重。

图 3 CNN-LSTM-Attention 模型结构 Fig.3 Model structure of the CNN-LSTM-Attention

3.2 模型的建立

将 CNN-LSTM-Attention 预测的目标参数设定 为主轴承温度、发电机定子温度和叶片变桨电机温 度,模型建立的具体步骤如下。

 1)数据的选取。选取 3~20 m/s 正常风速之间 风电机组的运行数据并剔除停机等非正常工况下的 干扰数据,选取与目标参数相关性较大的参数作为 输入参数,然后对选取的数据进行标准化处理,将值 归化到[0,1]区间。

2) 预测模型的建立。CNN 层的卷积核长度设 为1,数量为64。原则上,LSTM 隐含层越多拟合度 越好,但训练时间将随着层数的增加而显著增加,因此LSTM的层数设为2。第1层中的LSTM神经元数量为128,第2层神经元数量为64。激活函数为ReLU,优化器选择Adam。在注意力层中,注意力层的输入为LSTM的输出。模型的输出层为主轴承温度、发电机定子温度和叶片变桨电机温度,通过进一步分析残差来确定风电机组的运行状态。

3)预测模型的训练。通过相关性分析选择模型的输入变量,并对模型进行训练。在测试过程中,如果输入数据为正常运行状态数据并能够适应模型,则预测的均方根误差(root mean square error,简称 RMSE)较小。如果输入数据为异常状态数据而不能适应模型,那么预测的 RMSE 误差就会增加。

RMSE的计算公式为

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (r_i - \hat{r}_i)^2}$$
 (28)

其中: r_i 为实际值; \hat{r}_i 为预测值;n为样本数。

通过分析模型的结果,可以确定主轴承、发电机 定子和叶片变桨电机的工作状态。同时,将模型预 测得到的 RMSE 通过模糊综合评价,得出主轴承、 发电机定子和叶片变桨电机的健康状态评估。基于 CNN-LSTM-Attention 的状态监测和健康评估流程 如图4所示。

Fig.4 Status monitoring and health assessment process

3.3 时间滑动窗口模型

时间滑动窗口如图5所示。其中:x_i为t_i时刻的 数据;窗口宽度h为数据长度;l为移动增量;第k个 窗口对应时间t_{kh}至t_k的数据。当第k个窗口的数据 处理完后,窗口两端沿时间递增方向同时移动*l*,然 后再对第*k*+1个窗口中的数据进行处理。实际的 数据分析中*h*和*l*分别取5和1。

3.4 异常检测方法

深度学习模型的预测值与实际值之间的误差称 为残差,其包含了变量中的各种变化信息,可以反映 风电机组的健康水平。

得到预测值后,通过设定阈值观察 RMSE 的变 化趋势和突变程度来判别风电机组的工作状态。本 研究使用指数加权移动平均(exponentially weighted moving average,简称 EWMA)来设置阈值。通 过 EWMA 设定的阈值可以有效检测残差的 RMSE 波动。EWMA 的计算公式为

 $S_{t} = \lambda RMSE + (1 - \lambda)S_{t-1}$ (29) 其中: λ 为历史数据的权重,本研究取 $\lambda = 0.2; S_{t}$ 为 EWMA控制线的统计量。

监测风电机组运行状态的阈值是EWMA的上限,其计算公式为

$$U_{\iota} = \mu_{R} + X \sigma_{R} \sqrt{\lambda \left[1 - (1 - \lambda)^{2\iota}\right] / (2 - \lambda)} \quad (30)$$

其中: μ_R 为RMSE的均值; σ_R 为RMSE的标准差; X为与阈值位置相关的常数,本研究取 $X=3_{\circ}$

3.5 评价指标

采用 RMSE、平均绝对误差(mean absolute error, 简称 MAE)和平均绝对百分比误差(mean absolute percentage error, 简称 MAPE)来定量分析结果并验证所提模型的性能,计算公式分别为

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$
 (31)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$
(32)

MAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right| \times 100\%$$
 (33)

其中:n为采样点数;yi为实际值;ŷi为预测值。

4 实例分析

4.1 数据预处理

以某风场的风电机组为研究对象,选取了3组 SCADA数据进行分析,数据收集间隔为10min。 根据故障日志可知,由于主轴承、发电机定子和叶片 变桨电机的高温故障,风电机组分别于2016年2月 6日、2015年9月12日和2016年12月3日进行了停 机维修。分别选取1月1日至1月31日、7月1日至 8月31日、8月1日至10月31日之间的数据作为训 练样本,2月6日主轴承高温故障停机前400个采样 点、9月12日发电机定子高温故障停机前400个采 样点和12月3日叶片变桨电机高温故障前400个采 样点作为测试样本进行分析。

首先,根据风速结合切入风速对 SCADA 数据 进行处理。滤除异常数据前后的风速功率散点图如 图 6 所示。由图 6(a)可以看出,风速范围集中分布 在 0~14 m/s,而有功功率数据主要分布在风速 3~ 14 m/s内,因此筛选出风速为 3~14 m/s的数据。 然后,利用四分位法对数据进一步清洗。图 6(b)为 过滤后的风速功率散点图。

Fig.6 Scatter diagram of wind speed power before and after filtering abnormal data

4.2 参数选择

变量过多会造成数据冗余,影响预测模型的准确性。本研究选择的目标变量分别为主轴承温度、发电机定子温度和叶片变桨电机温度,选取相关系数大于0.8的变量作为输入变量。通过相关性分析,选择与主轴承温度、发电机定子温度和叶片变桨电机温度相关性高的变量作为输入变量。变量的选择如表1所示。各参数的相关性如图7所示。

4.3 主轴承状态监测与健康评估

将预处理后的数据导入 CNN-LSTM -Attention模型进行分析,通过计算实际值与预测值之间

表1 变量的选择

Tab.1 Selection of variables

序号	变量	主轴承状态	发电机定子	叶片变桨电机
		监测模型	状态监测模型	状态监测模型
1	1 输出	土 柚 丞 泪 庄	发电机定子	叶片变桨电机
1	变量	土田序価度	温度	温度
2		轮毂转速	轮毂转速	风速
3		风速	风速	输出功率
4		输出功率	输出功率	变桨电机电流
5	输入 变量	心中相中学	发电机电流	发电机定子
		反电机电流		温度
C		发电机运行	发电机运行	发电机运行
6		频率	频率	频率
7		发电机定子	ンはふり座	主轴承温度
		温度	土牰承温度	
8		机舱温度	机舱温度	机舱温度
9		控制柜温度	控制柜温度	控制柜温度

的 RMSE 来判断主轴承的运行状态,并使用 EW-MA 来设置阈值。为了连续反映 RMSE 的变化趋势,使用宽度为5的滑动窗口进行统计。主轴承模型预测结果如图 8 所示。可以看出:在第 260 个采样点 RMSE 首次超出阈值;此后阈值被多次超过,并在发生故障时出现较大突变;在 2 月 6 日风电机 组停机之前达到最大值。当 RMSE 超出阈值时,说 明主轴承的状态异常。预测时间与实际故障时间一 致,因此可以判定该预测模型预测结果有效。

为了进一步验证该模型的优越性,分别针对主 轴承模型故障发生前后,将CNN-LSTM-Attention 模型的评价指标与CNN-LSTM模型和LSTM模型 的评价指标进行了比较,如表2,3所示。主轴承状态监测模型比较如图9所示。由图可知:在正常运行状态下,所提出模型的RMSE中值更小且更集中,这表明该模型的预测效果更好;在异常状态下, RMSE具有突变值。从RMSE值的整体变化趋势 来看,CNN-LSTM-Attention模型在检测到故障时 表现出更明显的变化。表2,3的评价指标数值变化 趋势与图9一致,说明CNN-LSTM-Attention模型 在预测主轴承的运行状态时更加准确有效。

表 2 主轴承模型故障发生前评价指标比较 Tab.2 Comparison of evaluation indexes before main bearing model failure

指标	模型			
	LSTM	CNN-LSTM	CNN-LSTM-Attention	
RMSE	2.882	1.873	0.816	
MAE	2.723	1.796	0.709	
MAPE	6.834	4.563	1.351	

表3 主轴承模型故障发生后评价指标比较

Tab.3 Comparison of evaluation indicators after main bearing model failure

北村	模型			
1日 化小	LSTM	CNN-LSTM	CNN-LSTM-Attention	
RMSE	6.757	8.738	10.746	
MAE	6.628	8.691	10.686	
MAPE	9.245	12.132	15.051	

主轴承健康状态见图 10。主轴承在前 260 个采 样点处运行时处于"健康"和"良好"状态,机组运行 正常;在 261~316 个采样点间,健康状态出现显著 退化,为"注意"状态,说明此时主轴承可能出现异 常;317 个采样点后主轴承的健康状态处于"故障" 状态。从"注意"阶段到"故障"阶段的过渡趋势与 CNN-LSTM-Attention 模型的 RMSE 曲线基本 一致。

Fig.8 Main bearing model prediction results

图 9 主轴承状态监测模型比较 Fig.9 Comparison of main bearing condition monitoring models

4.4 发电机定子温度状态监测与健康评估

图 11 为发电机定子模型预测结果,可以看出, 在第 202个采样点后 RMSE 首次超出阈值,说明发 电机定子的状态异常,并在 9月 12 日风电机组停机 之前达到最大值。由于预测时间与实际故障时间一 致,可以判定该模型预测结果有效。

针对发电机定子故障发生前后,将CNN-LSTM-Attention模型的评价指标与CNN-LSTM 模型和LSTM模型的评价指标进行了比较,分别如 表4,5所示。发电机定子状态监测模型比较如图12 所示。由表4,5可以看出,CNN-LSTM-Attention 模型的评价指标优于其他模型。由图12可知,在正 常运行状态下,所提出模型的RMSE中值更小;在 异常状态下,RMSE值发生较大突变。从RMSE值 的整体变化趋势来看,CNN-LSTM-Attention模型 在检测到故障时出现更明显的变化。

发电机定子健康状态如图13所示。发电机定

表 4 发电机定子模型故障发生前评价指标比较 Tab.4 Comparison of evaluation indexes before generator stator model failure

指标	模型			
	LSTM	CNN-LSTM	CNN-LSTM-Attention	
RMSE	1.834	1.448	0.598	
MAE	1.805	1.181	0.557	
MAPE	3.896	2.472	1.129	

表 5 发电机定子模型故障发生后评价指标比较 Tab.5 Comparison of evaluation indexes after generator

stator model failure

指标	模型			
	LSTM	CNN-LSTM	CNN-LSTM-Attention	
RMSE	15.072	18.527	21.153	
MAE	15.138	18.493	21.116	
MAPE	19.561	24.239	27.775	

图 12 发电机定子状态监测模型比较 Fig.12 Comparison of generator stator condition monitoring models

Fig.13 Generator stator health status

子在前 202个采样点处运行时处于"健康"和"良好" 状态;在 203~241个采样点间,健康状态出现退化, 为"注意"状态,说明此时发电机定子可能出现异常; 242个采样点以后发电机定子的健康状态处于"故 障"状态。从"注意"阶段到"故障"阶段的过渡趋势 与 CNN-LSTM-Attention 模型的 RMSE 曲线一致, 说明发电机定子部件发生了异常。

4.5 叶片变桨电机温度状态监测与健康评估

将预处理后的数据导入CNN-LSTM -Attention模型进行分析,叶片变桨电机模型预测结果如 图 14 所示。可以看出,在第 285个采样点后 EMSE 首次超出阈值,在12月 3日风电机组停机之前达到最 大值。该模型可以有效地检测出叶片变桨电机故障。

同样地,针对叶片变桨电机故障发生前后,将 CNN-LSTM-Attention 模型的评价指标进行了 CNN-LSTM模型和LSTM模型的评价指标进行了 比较,分别如表6,7所示。叶片变桨电机状态监测 模型比较如图15所示。由表6,7可以看出, CNN-LSTM-Attention模型的评价指标优于其他模型,说明该模型能够更好地提取输入向量和输出向 量之间的逻辑关系。由图15可知:在正常运行状态 下,所提出模型的RMSE中值更小,说明该模型的

图 14 叶片变桨电机模型预测结果 Fig.14 Blade pitch motor model prediction results

图 15 叶片变桨电机状态监测模型比较 Fig.15 Comparison of condition monitoring models for blade pitch motors

预测效果更好;在异常状态下,RMSE值发生很大 突变。从RMSE值的整体变化趋势来看, CNN-LSTM-Attention模型在检测到故障时出现更 明显的变化,表明CNN-LSTM-Attention模型在预 测叶片变桨电机的运行状态时更加准确。

叶片变桨电机健康状态如图 16 所示。叶片变 桨电机在前 285 个采样点处运行时处于"健康"和 "良好"状态;在 286~343 个采样点间健康状态出现

表 6 叶片变桨电机模型故障发生前评价指标比较 Tab.6 Comparison of evaluation indexes before blade pitch motor model failure

指标		模	型
	LSTM	CNN-LSTM	CNN-LSTM-Attention
RMSE	3.255	2.714	1.611
MAE	3.478	2.872	1.547
MAPE	4.797	3.665	2.553

表7 叶片变桨电机模型故障发生后评价指标比较

Tab.7 Comparison of evaluation indexes after blade pitch motor model failure

指标	模型			
	LSTM	CNN-LSTM	CNN-LSTM-Attention	
RMSE	11.235	12.963	15.592	
MAE	11.225	12.950	15.568	
MAPE	12.834	14.891	17.996	

退化,为"注意"状态,说明此时叶片变桨电机可能出现异常;344个采样点以后叶片变桨电机的健康状态处于"故障"状态。从"注意"阶段到"故障"阶段的过渡趋势与 CNN-LSTM-Attention 模型的 RMSE曲线基本一致,由于过渡过程非常迅速,说明有关键部件发生了异常,此时应当立即检修排查故障。

5 结束语

笔者提出一种基于CNN-LSTM-Attention的风 电机组状态监测与健康评估方法。其中:CNN用于 提取隐藏数据中的空间特征;LSTM更好地融合了 部件状态的时间特性;注意力机制以概率分配权重 替代随机分配权重,可提高模型的精度;模糊理论用 于对风电机组的健康状态进行评估。对实际运行的 风电机组应用结果表明,该方法的状态监测与状态 评估结果更加准确,对保障风电机组安全稳定运行 具有重要意义。

参考文献

[1] 秦海岩."十四五",大力发展风电正当时[J].风能, 2021(11):1.QIN Haiyan. It is timely to vigorously develop wind

power during the 14th five year plan period [J]. Wind Energy, 2021(11): 1. (in Chinese)

- [2] 肖钊,邓杰文,刘晓明,等.基于运行规律和TICC算法的风电SCADA高维时序数据聚类方法[J].机械工程学报,2022,58(23):196-207.
 XIAO Zhao, DENG Jiewen, LIU Xiaoming, et al. Clustering method of high-dimensional time series SCA-DA data from wind turbines based on operational laws and TICC algorithm [J]. Journal of Mechanical Engi-
- [3] YANG G, ZHAO Y L, GU X H. A novel bayesian framework with enhanced principal component analysis for chemical fault diagnosis [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70; 1-9.

neering, 2022, 58(23): 196-207. (in Chinese)

- [4] 金晓航,泮恒拓,徐正国.数据驱动的风电机组变桨系 统状态监测[J].太阳能学报,2022,43(4):409-417.
 JIN Xiaohang, PAN Hengtuo, XU Zhengguo. Condition monitoring of wind turbine pitch system using datadriven approach [J]. Acta Energiae Solaris Sinica, 2022,43(4):409-417. (in Chinese)
- [5] 李辉,刘盛权,冉立,等.大功率并网风电机组变流器状态监测技术综述[J].电工技术学报,2016,31(8):1-10.
 LI Hui, LIU Shengquan, RAN Li, et al. Overview of condition monitoring technologies of power converter

for high power grid-connected wind turbine generator system[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 1-10. (in Chinese)

- [6] KANDUKURI S T, KLAUSEN A, KARIMI H R, et al. A review of diagnostics and prognostics of lowspeed machinery towards wind turbine farm-level health management [J]. Renewable and Sustainable Energy Reviews, 2016, 53: 697-708.
- [7] KUSIAK A, VERMA A. Analyzing bearing faults in wind turbines: a data-mining approach [J]. Renewable Energy, 2012, 48: 110-116.
- [8] 梁颖,方瑞明.基于SCADA和支持向量回归的风电机组状态在线评估方法[J].电力系统自动化,2013,37(14):7-12,31.
 LIANG Yin, FANG Ruiming. On line assessment method of wind turbine state based on SCADA and support vector regression[J]. Automation of Electric Power Systems, 2013, 37(14):7-12, 31. (in Chinese)
- [9] 王丽华,谢阳阳,周子贤,等.基于卷积神经网络的异步电机故障诊断[J].振动、测试与诊断,2017,37(6): 1208-1215.

WANG Lihua, XIE Yangyang, ZHOU Zixian, et al. Asynchronous motor fault diagnosis based on convolutional neural network[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(6): 1208-1215. (in Chinese)

- [10] JIN T T, YAN C L, CHEN C H, et al. Light neural network with fewer parameters based on CNN for fault diagnosis of rotating machinery[J]. Measurement, 2021, 181: 109639.
- [11] ZHU A F, ZHAO Q C, YANG T L, et al. Condition monitoring of wind turbine based on deep learning networks and kernel principal component analysis [J]. Computers and Electrical Engineering, 2023, 105: 108538.

第一作者简介:朱岸锋,男,1995年7月 生,博士生。主要研究方向为在线检测 与监控、设备运行状态评估。曾发表 《Condition monitoring of wind turbine based on deep learning networks and kernel principal component analysis》(《Computers and Electrical Engineering》 2023, Vol.105)等论文。

E-mail:547729870@qq.com

通信作者简介:赵前程,男,1969年10月 生,博士、教授、博士生导师。主要研究 方向为在线检测与监控、设备运行状态 评估和机器视觉测量。 E-mail: qczhao@hnust.edu.cn