DOI:10.16450/j.cnki.issn.1004-6801.2025.03.020

Kapton 膜材应力松弛性能试验研究*

刘 岩, 智云鹤, 陈奕贤, 王泽琛, 薛鑫媛 (长安大学建筑工程学院 西安,710061)

摘要 为研究聚酰亚胺(Kapton)膜材应力松弛性能,对其进行了不同初始应变(0.02、0.2、0.4、0.6)和不同温度(23、50、80、110和140℃)的应力松弛试验,获得了材料在各种工况下的应力松弛曲线及应力保持率数据,并用经典 Maxwell模型、广义Maxwell模型和分指数模型进行拟合。研究表明:Kapton 膜材有明显的非线性和应力松弛特性;应力松弛过程中最大应力和稳定应力随着初始应变的增大而增大,随着温度的增大而减小;应力保持率随着温度和初始应变的增大而减小,并得到了稳定应力和温度之间的关系式。该研究结论可为Kapton 膜材黏弹性理论、充气天线结构设计提供参考。

关键词 Kapton薄膜;应力松弛试验;力学性能;黏弹性模型 中图分类号 TH145.4

引 言

Kapton 膜材是一种常见的航天材料,具有机械 强度高、耐热变形能力强以及玻璃化转变温度高等 优点,被广泛用于充气可展开天线的反射面上^[1-2]。 Kapton 膜材是一种高分子膜材,具有膜材料的黏弹 性性质。其在服役过程中往往表现出应力松弛现 象:受力后随着时间的推移,应力减小,导致膜面应 力降低和重新分布,甚至会产生褶皱。对于反射面 型面精度要求较高的天线结构,变形会显著降低其 精度,导致天线电性能下降,影响其正常工作^[35]。

近年来,部分学者对各种黏弹性材料的应力松弛性能进行了研究。张营营等^[6]对聚四氟乙烯(PTEF)膜材进行了9种温度下的单轴单调和循环拉伸试验,得到了膜材力学参数变化规律。孟雷等^[78]研究了聚四氟乙烯(PTFE)膜的应力松弛性能和蠕变性能,以及PVC膜的应力松弛性能,并对PTFE 膜进行了松弛和蠕变试验,比较了各种模型的精度。PVC 膜材的单轴和双轴试验结果表明,该方法能够较好地模拟双轴应力松弛。

以上关于膜材应力松弛的研究对象基本为建筑 涂层织物类膜材,对Kapton膜材应力松弛性能的研 究却鲜有报道。涂层织物类膜材由涂层材包裹织物 基材组成,受力性能主要取决于经纬两向编织的织 物基材。Kapton 膜材是高分子主链上含有聚酰亚 胺环的一类高聚物。2类膜材的材料结构相异,涂 层织物类膜材的结论不适用于高分子膜材,因此有 必要开展 Kapton 膜材的应力松弛研究。笔者对 Kapton 膜材进行了不同温度和不同初始应变下的 应力松弛试验,并基于经典模型对试验结果进行了 拟合分析,为材料黏弹性参数的选取积累了基础数 据,也为设计大型空间可展开结构提供了参考。

1 单轴应力松弛试验

1.1 试样制备

本试验选取美国杜邦公司生产的聚酰亚胺(PI) 薄膜,型号为100HN,适用温度为-269 ℃~400 ℃。 Kapton薄膜基本参数如表1所示。

参照塑料薄膜拉伸试验国家标准《GB/T 1040—2012 塑料拉伸性能的测定》,采用切割样条 法沿膜材长度方向和垂直膜材长度方向各自裁剪出 矩形试样进行单轴应力松弛试验。试样标准尺寸为 200 mm×25 mm×25 μm。拉伸区域长度为 100 mm,夹持端长度为25 mm,Kapton 膜材试样尺 寸如图1所示。夹持端采用25 mm×25 mm厚的铝 片进行加固,以防止试件在夹持部分破坏。膜材取 样位置如图2所示。

^{*} 国家自然科学基金资助项目(51908043) 收稿日期:2022-11-25;修回日期:2023-02-12

表1 Kapton薄膜基本参数						
Tab.1	Ka	pton	film	basic	parameters	

参数	数值	单位	检测方法
电容率	3.9	F/m	ASTM D-150-81
耗散因数	3×10^{-2}	—	ASTM D-150-81
表面电阻率	3.6×10^{6}	$\Omega/m^{\rm 2}$	ASTM D-257-78
撕裂强度	11	Ν	ASTM D-1004-90
密度	1.54	g/cm ³	ASTM D-1004-90
导热系数	0.385	_	特拉华州大学检测法
热收缩率	0.2	_	ASTM D-5214-91

Fig.1 Kapton membrane specimen dimensions

Fig.2 Membrane sampling location

1.2 试验设备

本试验在哈尔滨工业大学航天学院特种环境与 复合材料技术国家重点试验室完成。如图3所示, 试验采用美国英斯特朗公司生产的INSTRON5965 电子红外拉伸试验机,试验机最大荷载为5kN。为 了减小试件端部滑移,使夹持处受力均匀,常温下试 验采用气动拉伸夹具,高温试验采用手动楔形夹 具。设备带有高温环境箱,可以将环境箱中温度调 至预设温度。

(a) 拉仲风短发星
 (b) 子列联ル天兵
 (c) 子列联ルス会社
 (c) 子列取扱い会社
 (c) 子列取

1.3 加载速率和初始应变的确定

研究表明,不同初始应变和加载速率会对膜材 的单轴应力松弛试验造成一定的影响。笔者在 Kapton膜材应力松弛试验进行前,为了确定试验方 案中的初始应变和加载速率,分别进行单轴拉伸预 试验和应力松弛预试验。

1.3.1 初始应变的影响

单轴拉伸预试验如图4所示。可以看出,曲线 大致分为4个阶段,即黏弹性阶段、软化阶段、应力 平台和硬化阶段。取初始应变为0.02、0.2、0.4和 0.6分别覆盖上述阶段。

1.3.2 加载速率的影响

不同加载速率下应力松弛试验如图5所示。预 试验分别以5、50、100和200mm/min进行,结果表 明,随着加载速率增大,应力趋于稳定的时刻越晚, 且应力衰减随着加载速率的增大而递增。为了得到 稳定可靠的应力松弛曲线,取5mm/min作为 Kapton 膜材应力松弛试验各工况的初始加载 速率。

Fig.5 Stress relaxation test under different loading rates

1.4 试验方案

本试验方案根据《GB 1040—2012 塑料拉伸性能的测定》和《膜结构技术规程》等确定,重点研究不同初始应变和温度对Kapton 膜材应力松弛的影响。

1.4.1 初始应变对Kapton 膜材应力松弛的影响 试验试件分为沿膜材长度(machine direction,

简称 MD)和垂直膜材长度(transverse direction,简称 TD)方向2组。初始应变分别为0.02、0.2、0.4和0.6,选择的加载速率为5 mm/min,加载至初始应变并保持位移不变。试验持续10 h,得到不同初始应变下膜材的应力-时间曲线。

1.4.2 温度对Kapton 膜材应力松弛的影响

试验试件分为 MD 和 TD 共 2 组。温度分别取 23、50、80、110 和 140 ℃。初始拉伸应变均为 0.4,将 试件放在温度调节箱中加载到预定温度,恒温 10 min后进行试验。加载速率为 5 mm/min,加载至 初始应变并保持位移不变。试验持续 10 h,得到不 同温度下膜材的应力-时间曲线。

2 应力松弛试验结果

2.1 应力-时间曲线

Kapton 膜材应力松弛试件如图 6 所示。图 6(a) 为加载前的试件,使用自动裁剪机制备,挑选出无锯 齿无裂痕的样件以供试验。白色部分为连接铝片处 所粘合的美纹纸。图 6(b)为应力松弛后试件,可以 看出样件因拉伸产生了"颈缩"现象。美纹纸因高温 在取下夹具时脱落,并不影响试验结果。

图 7 为不同初始应变下 Kapton 膜材应力-时间 曲线。图 7 中,最大应力和稳定应力是松弛过程中 最重要的 2 个参数。由图 7 (a)可知: MD 最大应力

(a) 加载前的试件 (a) The specimen before loading

(b) Specimen after stress relaxation 图 6 Kapton 膜材应力松弛试件

Fig.6 Kapton Membrane Stress Relaxation Specimens

图7 不同初始应变下Kapton膜材应力-时间曲线

分别为45.42 MPa(0.02)、113.8 MPa(0.2)、 137.18 MPa(0.4)和165.13 MPa(0.6);稳定应力分别为 30.93 MPa(0.02)、85.06 MPa(0.2)、92.29 MPa(0.4) 和115.07 MPa(0.6)。随着初始应变增大,最大应力 和稳定应力也会随之增大。由图7(b)可知,TD稳 定应力分别为24.06 MPa(0.02)、63.32 MPa(0.2)、 64.55 MPa(0.4)和67.04 MPa(0.6)。初始拉伸应变在0.2、0.4和0.6的情况下,TD方向的最终稳定应力值比较接近,仍满足上述规律。

图 8 为不同温度下 Kapton 膜材应力松弛的应 力-时间曲线。可以看出,应力和时间为非线性关系。 随着温度上升,其最大应力与稳定应力呈现出下降 趋势。以 MD方向为例,最大应力从 23 ℃的 137.18 MPa降至 140 ℃的 100.25 MPa,降幅为 26.9%;而稳 定应力则从 23 ℃的 92.29 MPa降至 140 ℃的 68.89 MPa,降幅为 25.4%。这表明温度对应力松弛有着 显著的影响。由分子理论可知,材料在受力过程中, 相应的分子运动或向活性状态的转变在微观上发 生。随着温度的提高,膜材内部分子热运动加剧,分 子间键能减弱,表现为应力松弛过程中的应力减小; 反之,若温度降低,则分子热运动减弱,分子间键能 较强,则表现为应力松弛中应力相对较大。

Fig.8 Kapton membrane stress-time curves at different temperatures

观察试件加载前后,整个试验过程中记录的试 件的加载变形基本均匀,未见锯齿状破坏。整体看 来曲线呈2个阶段:快速松弛阶段和缓慢松弛阶段。 2阶段的差异体现在应力衰减速率的不同。相同条 件下各个工况在整个应力松弛过程中,MD方向的 应力均大于TD方向。分析认为,造成该现象的主 要原因是Kapton 膜材在制作工艺中,牵拉、固化时两方向的差异导致。

2.2 应力保持率

由于Kapton 膜材的黏弹性特性,在给定初始应 变下的应力后,材料无法一直维持初始应力,发生变 形的部分会由弹性应变转变为塑性应变,应力会一 直下降直至相对稳定。为直观刻画材料的应力损失 性能,定义应力保持率为

$$\gamma = \frac{\sigma_t}{\sigma_0} \times 100\% \tag{1}$$

其中: σ_0 为初始应力值; σ_t 为试验进行到t时刻的应力值。

限于篇幅,笔者选取不同初始应变下应力松弛 数据为代表,计算1800、3600、10000、20000和 30 000 s下的应力保持率。表2为不同初始应变下 膜材的应力保持率。可以看出:①针对相同初始应 变条件下 MD 方向膜材的应力保持率略高于 TD 方 向膜材,经计算得出MD方向膜材最终应力保持率 的平均值为70.2%,高于TD方向膜材的平均值 66.8%,这表明TD方向的黏滞性强于MD方向,造 成此现象的原因是两方向工艺差异;②快速松弛阶 段 30 min 完成的应力松弛量约占 10 h的 80%, 随着 时间增加,应力衰减率逐渐减小,从而进入缓慢松弛 阶段。以初始应变为0.02的MD方向膜材数据为 例,在 30 min 内应力保持率从 100% 下降至 80.87%,降幅为19.13%,耗时30min,应力衰减速 率为0.638%/min,后续持续下降,直至其应力衰减 速率从最初的 0.638%/min 下降至 30 000 s 时的 0.015 9%/min,此时可以认为达到稳定应力状态。

Tab.2	Stress	retention	rate	of the	membrane	mate-
	rial at	different	initia	l strain	IS	%

初始	膜材			t/s		
应变	方向	1 800	3 600	10 000	20 000	30 000
0.02	MD	80.87	78.95	73.43	70.59	67.93
	TD	78.80	76.41	70.46	66.68	62
0.2	MD	76.38	75.25	74.8	74.95	74.86
	TD	75.43	74.02	73.08	72.89	72.7
0.4	MD	74.5	72.8	70.93	69.9	68.25
0.4	TD	73.85	71.87	69.92	68.68	67.88
0.6	MD	75.5	73.25	71.26	70.27	69.75
	TD	73.14	70.411	67.42	65.66	64.76

随着初始应变的增加,应力保持率随之减小。分析 认为,更大的初始应力会造成分子链更大程度的破 坏,从而导致其应力保持率衰减。

2.3 稳定应力与温度之间的关系

Kapton 在不同温度下稳定应力与温度的关系 如图 9 所示,对其进行拟合,得到稳定应力与温度的 经验关系式为

$$\sigma_{\infty} = A'T^2 + B'T + C' \tag{2}$$

其中: σ_{∞} 为稳定应力;T为温度;A'、B'和C'为拟合参数。

由图9可见:拟合曲线可以表现稳定应力随温 度变化的大致趋势,应力松弛的稳定应力与温度呈 非线性关系,温度上升则稳定应力下降。由材料热 力学可知,当温度上升,材料内部分子热运动会更加 剧烈,熵值越大,分子的扩散驱动力越大,故应力松 弛极限越低。

图 9 Kapton 在不同温度下稳定应力与温度的关系

Fig.9 Kapton's relaxation limit at different temperatures as a function of temperature

拟合关系式可以预测一定范围内温度的稳定应力,对于研究Kapton 膜材黏弹性性能有一定的参考 意义,关系式为

$\sigma_{\rm MD} = -0.004\ 7\ T^2 - 0.000\ 815\ T + 88.78$	(3)
$\sigma_{\rm TD} = -0.176\ 54T^2 - 0.000\ 18T + 70.439\ 03$	(4)

3 应力松弛的模型拟合

根据黏弹性材料的数学模型,采用弹性元件和 黏性元件组合来模拟材料的应力松弛性能。经典的 黏弹性模型包括 Maxwell模型、Kelvin-voigt 模型和 Burgers模型^[9]。将经典模型扩展,可得到广义 Maxwell模型和广义 Kelvin-voigt模型。随着元件数量 的增加,参数也随之成倍增加,复杂的参数会造成应用不便。

3.1 经典 Maxwell 黏弹性模型

经典 Maxwell 模型由一个弹性元件(弹簧)和一 个黏性元件(黏壶)串联而成,在恒定初始应力的作 用下,其应变为弹性元件和黏性元件的应变之和,即

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}' + \boldsymbol{\varepsilon}'' \tag{5}$$

对式(5)微分,得到在恒定应变 ϵ_0 下经典Max-well模型应力松弛的表达式为

$$\sigma(t) = E \varepsilon_0 \mathrm{e}^{-t/\tau_r} \tag{6}$$

其中: τ_r 为松弛时间,且 $\tau_r = \eta/E$;E为弹性模量; σ 为应力; ε_0 初始应变。

图 10、11分别为不同初始应变下和不同温度条件下经典 Maxwell 拟合曲线。可以看出,经典 Max-well 曲线只能表征缓慢松弛阶段的大致趋势,而应 力松弛刚开始时的快速松弛阶段趋势无法呈现。这 主要是因为经典 Maxwell 模型只是时间的一个指数 函数,而大多数高分子聚合物材料的流变过程较为 缓慢。因此,需要寻求其他模型对应力松弛特性进 行精确拟合。

图 10 不同初始应变下经典 Maxwell 拟合曲线 Fig.10 Classical Maxwell fitting curves for different initial strains

Fig.11 Classical Maxwell fitting curves at different temperatures

3.2 广义 Maxwell 模型

广义 Maxwell 模型如图 12 所示,由多个经典 Maxwell 模型并联而成。该模型相较于经典 Maxwell 模型,可以更好地描述材料的应力松弛现象,其 松弛模量表达式为

$$Y(t) = E_{e} + \sum_{i=1}^{n} E_{i} e^{-t/\tau_{i}}$$
(7)

其中: E_e 为平衡模量, 是 $t \rightarrow \infty$ 时模量 Y(t)的稳态 值; $\tau_i = \eta_i / E_i$, 为第i个 Maxwell 单元的松弛时间。

图 12 广义 Maxwell 模型 Fig.12 Generalized Maxwell model

当n→∞,即并联无数个Maxwell单元时, τ 自0 至无穷大连续分布。

$$\sigma(t) = \varepsilon_0 Y(t) \tag{8}$$

图 13、14分别为不同初始应变下和不同温度下 广义 Maxwell 拟合曲线。为获得较好的精度,元件

图 13 不同初始应变下广义 Maxwell 拟合曲线 Fig.13 Generalized Maxwell fitting curves under different initial strains

peratures

数选择11。先计算松弛模量与时间的关系,然后进 行拟合。由于松弛模量是松弛应力除以初始应变所 得,初始应变为定值,因此松弛模量-时间曲线的趋 势与应力-时间曲线的趋势相同。与经典Maxwell 模型相比,广义Maxwell模型拟合效果更好,可以拟 合出快速松弛阶段和缓慢松弛阶段的趋势。

3.3 分指数模型

由于弹性体和黏弹性体的相似性,利用对应原 理就可以求出相应的黏弹性问题的解。为了实现非 线性弹性本构关系与黏弹性本构关系的对应,张淳 源等^[10]提出了黏弹性本构理论中的弹性回复对应原 理,并通过计算验证了回复原理的正确性。松弛模 量的一般实用解析表达式为

 $Y(t) = Y_{\infty} + (Y_0 - Y_{\infty}) \exp\{-\beta [(\gamma + \alpha)t]^{1-\alpha}\}$ (9)

其中: Y_{∞} 为长期松弛模量; Y_{0} 为瞬态松弛模量; α,β,γ 为待定系数。

图 15、16分别为不同初始应变下和不同温度下 分指数模型拟合曲线。可以看出,分指数模型用来 描述应力松弛有很好的适配性,可刻画应力松弛的

Fig.15 Fitting curves of fractional exponential model with different initial strains

图16 不同温度下分指数模型拟合曲线

Fig.16 Fitting curves of sub-index models at different temperatures

快速松弛阶段和缓慢松弛阶段。利用该模型拟合只 需要4个参数,大大减少了计算复杂度。

3.4 可决系数

可决系数是衡量样本回归线对样本观测值的拟 合程度,由回归平方和在总变差中所占的比重确 定。其计算公式为

$$R^{2} = \left[\frac{\sum(x - \bar{x})(y - \bar{y})}{\sqrt{\sum(x - \bar{x})^{2}\sum(y - \bar{y})^{2}}}\right]^{2} \quad (10)$$

可决系数说明了在总变差中由模型做出解释部分所占的比重,其值在 0~1之间。模型拟合度越好,可决系数大,反之则小。笔者采用可决系数来表征 3种模型的拟合效果。

表3、4分别为不同初始应变下和不同温度下的 拟合可决系数。由表3可知,不同初始应变下分指 数模型的可决系数平均值为0.954,大于广义Maxwell模型的可决系数平均值0.936和经典Maxwell 模型的平均值0.380。由表4可知,不同温度下分指 数模型的可决系数平均值为0.911,大于广义Maxwell模型的0.906和经典Maxwell模型的0.228。可 见,从拟合度上来说,分指数模型优于广义Maxwell 模型和经典Maxwell模型。广义Maxwell模型由11 个参数进行拟合,相比经典模型,更多的参数会得到 更高的拟合精度。分指数模型仅用4个参数,其拟 合度却优于广义Maxwell模型,表明分指数模型更 加适用于描述Kapton膜材的应力松弛性能。

表 3 不同初始应变下的拟合可决系数 Tab.3 Decidability coefficients for two Maxwell fits with different initial strains

主点	推刑	初始应变					
刀凹	侠堂	0.02	0.2	0.4	0.6		
	经典Maxwell	0.772	0.020	0.300	0.188		
MD	广义 Maxwell	0.984	0.972	0.810	0.917		
	分指数模型	0.983	0.941	0.904	0.947		
TD	经典Maxwell	0.902	0.120	0.330	0.407		
	广义 Maxwell	0.973	0.991	0.938	0.906		
	分指数模型	0.985	0.963	0.950	0.965		

表4 不同温度下的拟合可决系数

Tab.4 Decidability coefficients for two Maxwell fits at different temperatures

方向	模型	23 °C	50 ℃	80 ℃	110 ℃	140 ℃
MD	经典 Maxwell	0.300	0.526	0.191	0.004	0.089
	广义 Maxwell	0.982	0.910	0.852	0.845	0.924
	分指数模型	0.904	0.973	0.957	0.857	0.961
TD	经典 Maxwell	0.330	0.210	0.616	0.005	0.005
	广义 Maxwell	0.979	0.985	0.949	0.720	0.917
	分指数模型	0.950	0.922	0.980	0.838	0.768

4 结 论

1) 各工况下应力-应变曲线均呈现2个阶段,即 快速松弛阶段和缓慢松弛阶段。分析认为,更大的 初始应力会造成分子链更大程度的破坏,从而减小 其应力保持率,且 MD 方向膜材应力保持率高于 TD 方向。

2)随着温度的提高,膜材内部分子热运动加 剧,分子间键能减弱,表现为应力松弛过程中的应力 减小;反之,若温度降低,则分子热运动减弱,分子间 键能较强,则表现为应力松弛中应力相对较大。

3)基于该试验结果,对于充气天线结构设计, 膜材厚度宜选为25μm,且将膜材MD向布置在反 射面主受力方向,在20~50℃范围内膜材应力保持 率较高,满足工程应用要求。

参考文献

[1] 周华楠.空间热效应对网状天线反射面面型精度的影

响分析[D]. 哈尔滨:哈尔滨工业大学, 2016.

- [2] 刘福寿.大型空间结构动力学等效建模与振动控制研 究[D].南京:南京航空航天大学,2015.
- [3] LICHODZIEJEWSKI D, VEAL G, DERBES B. Spiral wrapped aluminum laminate rigidization technology[J]. AIAA, 2002, 1701: 1-8.
- [4] SUO Z G. Theory of dielectric elastomers [J]. Acta Mechanica Solida Sinica, 2010, 23(6): 549-578.
- [5] BHATIA M, LIVNE E. Design-oriented thermostructural analysis with external and internal radiation
 [J]. Transient Response AIAA Journal, 2009, 46(3): 1228-1240.
- [6] 张营营,张其林,周传志.温度对PTFE膜材料力学性能的影响[J].建筑材料学报,2012,15(4):478-483.
 ZHANG Yingying, ZHANG Qilin, ZHOU Chuanzhi.
 Effects of temperature on mechanical properties of PT-FE coated fabrics [J]. Journal of Building Materials, 2012, 15(4):478-483. (in Chinese)
- [7] 孟雷,吴明儿.建筑用PTFE膜材应力松弛和徐变性 能研究[J].建筑材料学报,2012,15(2):206-210.
 MENG Lei, WU Minger. Study on stress relaxation and creep properties of PTFE membrane[J]. Journal of Building Materials, 2012, 15(2): 206-210. (in Chinese)
- [8] 孟雷,吴明儿.建筑用PVC 膜材应力松弛性能研究
 [J].建筑材料学报,2013,16(5):919-922.
 MENG Lei, WU Minger. Study on stress relaxation properties of PVC membrane [J]. Journal of Building Materials, 2013, 16(5):919-922. (in Chinese)
- [9] SHIESSEL H, METZLER R, BLUMEN A, et al. Generalized viscoelastic models: their fractional equations with solutions [J]. Journal of Physics A: Mathematical and General, 1995, 28(23): 6567-6584.
- [10] 张淳源,张为民.高分子材料非线性粘弹性问题的解 法[J].高分子材料科学与工程,2002,18(3):4-9.
 ZHANG Chunyuan, ZHANG Weimin. Solution approach for nonlinear viscoelastic problems for polymer materials [J]. Polymer Materials Science & Engineering, 2002, 18(3):4-9. (in Chinese)

第一作者简介:刘岩,男,1984年11月 生,博士、副教授。主要研究方向为充气 天线结构温度场效应及精度控制技术。 曾发表《Kapton薄膜单向拉伸中心撕裂 性能研究》(《武汉大学学报(理学版)》 2022年第68卷第3期)等论文。 E-mail:liuy@chd.edu.cn