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摘要  为了提高小样本图像条件下列车轮对轴承故障检测水平，提出了一种基于多分辨率孪生神经网络（multi⁃
resolution siamese neural network， 简称 MrSNN）模型的列车轮对轴承表面缺陷机器视觉检测方法。首先，采用孪

生神经网络（siamese neural network， 简称 SNN）为基础模型框架，构建了包含不同卷积核尺寸及不同膨胀因子大

小的多分辨率卷积融合模块（multi⁃resolution convolution fusion block， 简称 MrCFB）来综合提取图像中的细节特征

与轮廓特征信息；其次，采用通道和空间的双重注意力机制重新标定多分辨率特征权重，进一步增强模型的图像特

征提取能力；最后，通过对轮对轴承正常、划伤、凹痕及剥落 4 类图像进行检测分析，完成了算法验证。实验结果表

明，轮对轴承 3 类故障图像识别率为 100%，正常图像识别率为 95%，总体识别准确率为 98.75%，识别准确率优于传

统 SNN 和 YOLO⁃V5 等网络模型。
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引  言

轮对轴承是列车走行部的核心部件之一，其健

康状态直接影响列车运行的安全水平。然而，恶劣

的工作环境极易引发列车轮对轴承发生划伤、剥离

及凹痕等多种故障［1］。因此，为了保障列车的安全

平稳运行，亟待对轮对轴承的各类缺陷故障进行准

确检测。当前，振动信号分析［2］、轴箱温度监测［3］及

轨边声学监测［4］等技术被广泛用于列车轴承的故障

诊断。但是，受安装空间狭小、缺少电源等硬件条件

的限制，铁路列车上安装车载振动监测系统非常困

难。轴箱温度监测存在频发的误报警现象，并且无

法有效监测轮对轴承早期故障。轮对轴承布置在轴

箱内部，不作解体检查时，很难发现轴承表面的损

伤。因此，列车必须按照运行里程及时间有计划地

返厂进行拆解维修，才能更准确地检测轴承故障。

现阶段，主要按照《滚动轴承圆锥滚子技术条件》，通

过人工视觉及经验检测轴承表面缺陷故障。

基于机器视觉的表面缺陷检测方法具有速度

快、成本低及智能化等特点，能够适应现代化工业生

产，正逐步取代人工检测方法。王恒迪等［5］对采集

的列车轴承表面缺陷图像进行中值滤波、阈值分割

及边缘检测处理后，利用正常与缺陷图片的灰度差

值来识别缺陷轴承。陈硕等［6］采用四连通域确定相

关区域后，通过最小二乘法识别列车轴承套圈轮廓

并进行磕碰伤检测。石炜等［7］对列车轴承图像进行

二值化处理、形态学滤波及图像标记后，利用分类决

策树进行不同类型缺陷识别。杨加东等［8］对图像进

行 阈 值 分 割 与 几 何 特 征 提 取 后 ，构 建 反 向 传 播

（back propagation，简称 BP）神经网络对列车轴承缺

陷进行分类识别。上述检测方法需要繁杂的图像预

处理操作，无法快速地对图像进行分析处理。此外，

传统机器学习方法存在图像特征提取困难、学习能

力差等问题，不能满足列车轮对轴承表面缺陷检测

精度、速度及泛化性的实际需求。

随着深度学习理论的发展，基于深度神经网络

开展图像识别的研究已经成为机器视觉领域中的热

点。Xie 等［9］构建了两级分层的深度卷积神经网络

（convolutional neural network， 简称 CNN）用于下水

管道缺陷的识别与分类。Wang 等［10］提出了一种双

向联合 CNN 检测模型，能够较为有效地提取不同损

伤图片的纹理特征，识别钢板表面缺陷的不同类型。

此外，YOLO 系列网络［11］、Transformer 模型［12］等方

法也不断涌现。在实际场景中，轮对轴承表面缺陷

故障复杂多样，难以获得一定规模的样本图像，传统

的深度学习方法在这种小样本任务学习中的检测准

确率往往不能令人满意。

基于上述分析，笔者提出了一种特征提取增强
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的 MrSNN 模型构建方法，用于解决小样本图像下

轮对轴承表面缺陷难以准确检测的问题。该模型的

主要优势在于：①通过搭建 SNN 双分支网络框架，

以相似性度量为判别依据，在小样本条件下对未知

图像样本进行有效识别，克服了传统神经网络模型

在小样本数据集下准确率不高的问题；②构建包含

不同卷积核尺寸及不同膨胀因子大小的 MrCFB，通

过增加网络模型的宽度，综合提取图像中的细节特

征与轮廓特征，从而获取鲁棒性更好的多分辨率特

征信息，增强特征识别效果；③建立了基于通道和空

间的双重注意力机制，可以自适应地对已提取的多

分辨率特征进行标定，在增加重要特征权重占比的

同时，抑制无效特征及图像噪声的干扰，从两个维度

上增强了特征选取的准确性。

1 孪生神经网络模型

传统的 CNN 已被证明具有较强的特征挖掘与

特征学习能力，广泛用于文本分类、模式识别等领

域［13］。然而，传统的 CNN 往往依赖大量的数据样本

以及样本标签，只有在大样本数据驱动下才能得到

学习能力较好的网络训练模型。轮对轴承检修过程

中出现缺陷的概率较小，具有很强的随机性，大部分

都是正常轴承，难以获取一定规模的具有明确标签

的样本图像。因此，要准确识别轮对轴承表面缺陷

故障，需要构建适用于小样本条件下的图像识别神

经网络模型。

SNN 是一种基于相似性度量的网络模型，具有

很强的未知样本判别能力，已经在外貌识别、签名验

证及视觉跟踪等领域得到了初步应用［14⁃15］。由于

SNN 擅于处理小样本问题，因此通过构建 SNN 框

架来实现小样本图像的分类识别。与 CNN 模型不

同，SNN 由两个分支结构组成，以其作为特征提取

的网络具有相同的网络结构，共享权值参数。孪生

神经网络框架如图 1 所示。在进行图像任务识别过

程中，一个分支输入参考的样本图像 Xa，另一个分

支输入待测试的样本图像 Xb，这两个图像构成了一

个样本对 ( Xa，Xb )。两路特征提取网络分别提取

Xa和Xb 的特征信息，映射输出至同一低维特征空

间，分别得到相应的特征向量 G ( Xa )和G ( Xb )。计

算这一特征向量对之间的欧氏距离，并以此判别样

本对 ( Xa，Xb )之间的相似程度。其数学表达式为

Ew = G ( Xa )- G ( Xb )
2

（1）

其中：Ew为样本对 ( Xa，Xb )之间的欧氏距离； •
2
为

特征向量之间的二范数。

当样本对中 Xa和Xb 接近、同属于一个类别时，

其相似程度大；当 Xa和Xb 分属于不同类别时，其相

似程度小。对于数量为N的训练样本，通过 SNN 框

架可以构建总数为 N×（N-1）个样本对，有效增大

了用于训练的样本数量，提升了小样本条件下 SNN
训练结果的鲁棒性。

SNN 模型在训练过程中采用对比损失函数作

为目标优化函数，其表达式为

L (W，Y，X a，X b )=
1
2 [ ( 1 - Y )E 2

w + Y { max ( 0，m- Ew )2 ] （2）

其中：m为设定阈值；Y为两样本之间相似度度量

标签。

Y=1 表示 ( Xa，Xb ) 中两个样本相似，Ew 较大，

说明当前网络模型不好，损失加大；Y=0 表示两个

图像样本不相似，Ew较小，损失亦会增大［16］。

2 多分辨率卷积融合模块

传统的 SNN 模型中特征提取网络通常采用

AlexNet。小样本条件下要准确识别轮对轴承表面

缺陷的各类故障，需要充分挖掘有限数量图像中的

特征信息。传统的 CNN 中卷积层往往采用单一尺

度的卷积操作，卷积过程中感受野的范围是固定的，

只能提取单一分辨率的图像特征信息。同时，固定

尺度的卷积操作只能在单通道内进行，因此限制了

网络卷积层的宽度。

增大卷积操作中感受野的范围可以通过增大卷

积核尺寸及改变膨胀因子大小来实现。标准卷积

（standard convolution， 简称 SC）中卷积核的尺寸与

感受野的范围相同，增大卷积核尺寸，卷积操作中感

受野的范围也会相应增大。不同卷积核尺寸的卷积

操作如图 2 所示。增大膨胀因子则是增大了卷积操

作中特征图各元素之间的间隔，不同膨胀因子的卷

图 1　孪生神经网络框架

Fig.1　Framework of the SNN
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积操作如图 3 所示。虽然图中卷积核的尺寸都是

s=2×2，但随着膨胀因子 d的增大，感受野的范围

显著增加，这被称为膨胀卷积（dilation convolution， 
简称 DC）。对比发现，通过改变膨胀因子来增大卷

积感受野的效率明显高于增大卷积核尺寸，但是膨

胀因子越大，卷积操作中遗漏的元素数量也越多，虽

然整个轮廓增大了，但细节特征也会明显丢失。

笔者提出一种新的 MrCFB 构建方法，该模块

融合了不同膨胀因子大小与不同卷积核尺寸的卷积

操作。多分辨率卷积融合模块如图 4 所示。整个模

块采用残差块结构，通过添加恒等映射有效缓解了

网络深度增加带来的梯度消失及网络性能退化问

题。首先，在主连接中同一层采用了卷积核尺寸为

s=3×3 的 4 个 DC 操作，膨胀因子 d分别为 1、2、3 和

4，随着膨胀因子不断增大，相应感受野范围明显增

大，所提取的图像轮廓范围也会增大；其次，利用

Concatenate 级联操作将不同分辨率的图像轮廓特

征融合在一起；然后，进行 4 个卷积核尺寸分别为

1×1、3×3、5×5 和 7×7 的 SC 操作，提取图像不同

分辨率的细节特征信息；最后，再次通过级联操作将

多分辨率特征信息进行融合。为进一步提升网络的

泛化能力，加快收敛速度，卷积操作之前采用了批标

准（batch normalization， 简 称 BN）操 作 和 函 数 为

ReLU 的激活操作。所提模块有效增加了网络的宽

度，通过融合不同膨胀因子的 DC 及不同卷积核尺

寸的 SC 操作，综合提取了图像中的轮廓特征和细

节特征信息。

3 双重注意力机制模块

多分辨卷积融合模块虽然可以充分挖掘图像中

的轮廓特征和细节特征信息，但是由于级联融合操

作导致提取到的图像特征信息成倍增加。因此，突

出有用特征的权重，减少无用特征的占比，将提高关

键特征提取的准确率，增强网络模型的性能。双重

注意力机制是一种用于输入特征增强的方法［17］，相

比于常用的压缩激活（squeeze and excitation， 简称

SE）注意力机制，其同时引入了通道注意力模块和

空间注意力模块，均采用了全局最大池化（global 
max pooling， 简称 GMP）和全局平均池化（global 
average pooling， 简称 GAP）操作。相比于采用单一

的 GMP 或 GAP，其具有更强的特征表征能力［18］。

双重注意力机制模块如图 5 所示，由通道和空

间两个注意力模块顺序连接。通道注意力模块中，

首先对特征图分别进行 GMP 和 GAP 操作，将得到

的特征图分别送入一个 2 层的共享参数的多层感知

（multilayer perceptron， 简称 MLP）网络，然后将输

出的结果相加并输入至 Sigmoid 函数，得到归一化

后权重系数。具体过程表示为

A ( F )= δ ( MLP ( GMP ( F ) )+ MLP ( GAP ( F ) ) )
（3）

其中：δ ( • )为 Sigmoid 归一化操作。

将权重系数与原特征图在对应通道相乘得到处

理后的特征图，并将其作为空间注意力机制模块输

入特征图。基于通道分别进行 GMP 和 GAP 操作，

得到两个特征图，通过级联操作堆叠在一起，再经过

卷积核数量为 1、尺寸为 s=7×7 的 SC 操作后，通过

Sigmoid 函数处理得到权重系数，即

B ( F′)= δ ( f 7 × 7 ( Concat ( GMP ( F′)，GAP ( F′) ) ) )
（4）

其中：f 7 × 7 ( • )为 7×7 卷积。

双重注意力机制从通道和空间两个维度自适应

地对特征图不同位置赋予了不同的权重系数，提高

了特征图中各个特征在通道和空间上的联系。本研

究将其嵌入 MrCFB 中，筛选出更有价值的关键特

图 4　多分辨率卷积融合模块

Fig.4　Multi-resolution convolution fusion block

图 2　不同卷积核尺寸的卷积操作

Fig.2　Convolution operations with different convolution ker⁃
nel sizes

图 3　不同膨胀因子的卷积操作

Fig.3　Convolution operation using different dilation factors
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征信息，有效增强了整个模块的特征提取能力。

4 实验分析与讨论

4.1　轮对轴承样本图像介绍　

实验中轮对轴承来自于中车石家庄车辆有限公

司轮对轴承检修流水线，轴承样本图像包含正常、划

伤、凹痕及剥落 4 种类型。部分轮对轴承图像如图 6
所示。由于列车轮对轴承发生故障具有随机性强、

概率性小等特点，因此所采集的缺陷图像样本数量

较少，4 种类别图像共 80 张。为提升模型分析的有

效性，通过数据增强的方式对图像进行扩充。首先，

分别采用水平翻转和垂直翻转方式使原有全部图像

数量扩充了 2 倍；其次，对原有图像进行平移，通过

采用调整图像色度和对比度的方式使平移后的图像

再扩充 2 倍，最终得到 4 类样本图像 400 张。实验分

析时，每一类别中随机选取训练集样本占 80%，验

证集样本占 10%，测试集样本占 10%。实验分析采

用五折交叉验证，最终结果取均值。

4.2　所提网络模型结构及参数设置　

本研究基于 SNN 框架，所构建的基于特征增强

的特征提取网络如图 7 所示。网络首层是卷积核个

数为 32、尺寸为 3×3、步长为 4 的 SC 操作，经过 BN
和 ReLU 激 活 操 作 后 ，连 接 2 个 特 征 增 强 的

MrCFB。第 1 个模块中每个分支卷积核个数为 16，
融合后共 64 通道；第 2 个模块中每个分支卷积核个

数为 32，共 128 个。最后是 2 个全连接层（fully con⁃
nected layer，简称 FC）。第 1 个 FC 神经元的个数为

128，第 2 个 FC 神经元个数为 50，激活函数为 Sig⁃
moid。为了减少过拟合的影响，FC 前均使用了

Dropout 层 ，参 数 为 0.5。 模 型 分 析 使 用 的 是 Py⁃
thon3.6 编程语言，深度学习框架为 tensorflow。计

算机硬件配置为 Intel（R） Core i7⁃7700 CPU，8GB
内存。模型训练时，数据批量大小为 64，轮次为

150，学习率参数为 0.000 1。

4.3　算法识别流程　

传统孪生网络仅具备二分类性能，即区分测试

样本对是否属于同一类。如果测试样本对属于同一

类，测试标签为 1，是正例识别；不属于同一类，测试

标签为 0，是负例识别。评价孪生网络二分类结果

准确率 P的计算式为

P= TP
TP + FP × 100% （5）

其中：TP 为将正例识别为正例的数量；FP 为将负例

错误识别为正例的数量。

为了使所提网络模型具备多分类的能力，在所

提网络模型二分类的基础上进行如下操作：

1） 在训练集中随机构建样本对，两图像属于同

一类，标签为 1，否则标签为 0；
2） 遍历测试集中图像，将其作为待测样本图

像，依次从测试集 4 类图像样本中随机选取 1 张图

像，与待测样本构成测试样本对；

3） 搭建所提网络模型，输入训练样本及标签，

图 5　双重注意力机制模块

Fig.5　Double attention mechanism module

图 6　部分轮对轴承图像

Fig.6　Images of some wheelset bearings
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完成网络的迭代训练，得到训练好的网络模型；

4） 分别记录测试样本对中待测图像样本与非

待测图像样本的类别，然后将测试样本对输入已训

练好的网络模型进行测试；

5） 根据网络模型测试输出，判断测试样本对的

检测结果，计算每一类待测图像的识别准确率。

4.4　实验结果及分析　

所提网络模型在训练过程中，其损失值迭代过

程如图 8 所示。由图可知，损失值（无量纲）随着轮

次的增加而减小，在轮次为 100 之后，训练集和验证

集的损失值趋于稳定，网络模型达到收敛。

通过所提网络模型对测试集样本进行识别，缺

陷识别准确率见表 1。测试结果混淆矩阵如图 9 所

示。可知，轮对轴承划伤、凹痕及剥落故障中每一类

的识别准确率均可达到 100%，正常样本的识别准

确 率 为 95%，所 有 测 试 样 本 整 体 识 别 准 确 率 为

98.75%。通过对比分析发现，部分正常样本图像被

错误划分为划伤缺陷，这是因为列车轮对轴承长期

服役过程中，轴承元件表面出现了类似划伤的痕迹，

但由于程度轻微，工业现场中并不会判别为划伤

缺陷。

批量大小的设置会对所提模型的检测准确率和

运行效率产生影响。将其分别设置为 16、32、64、
128 和 256，不同批量大小的影响结果如图 10 所示。

由图可知，批量大小设置的越大，模型的训练时间越

少，当设置为 64 时，检测准确率最高，因此本研究取

批量大小为 64。网络模型中 MrCFB 数量越多，网

络深度越深，结构越复杂，运行效率越低；反之，深度

越浅，挖掘特征的能力越弱。因此，有必要分析

MrCFB 模块数量对所提网络模型的影响。模块数

量分别设置为 1，2，3 和 4，不同模块数量的影响结果

如图 11 所示。由图可知，随着模块数量的增加，模

型训练所需的时间也明显增加，运行效率显著降

低。当模块数量为 2，3，4 时，检测准确率都接近

100%，说明模型的识别效果令人满意。因此，本研

究在综合考虑网络模型运行效率和准确率的前提

图 7　基于特征增强的特征提取网络

Fig.7　Feature extraction network based on feature enhancement

图 8　所提网络的损失值迭代过程

Fig.8　Iterative process of loss function

表 1　所提网络模型缺陷识别准确率

Tab.1　Defect recognition accuracy of the proposed 
network model %

缺陷类型

正常

划伤

凹痕

剥落

正常

95
0
0
0

划伤

5
100

0
0

凹痕

0
0

100
0

剥落

0
0
0

100

图 9　测试结果混淆矩阵

Fig.9　The confusion matrix of test result
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下，MrCFB 数量设置为 2。
所提网络模型中阈值m（无量纲）的设定也会对

模型输出结果有较大影响，不同阈值的影响结果如

图 12 所示。由图可知：当m值设定为 0.6 及以下时，

模型输出准确率较低；当 m值设定为 0.7 及以上时，

模型输出准确率较高，当 m=0.8 时准确率最高，因

此本研究选取m=0.8。

4.5　对比分析　

对目前常用的 4 种方法进行了对比分析，即分

别以 Alexnet［19］和 ResNet［20］为主干网络的 SNN 模

型 ，YOLO⁃V5［21］网 络 模 型 及 主 干 网 络 为 所 提

MrCFB（不包含双重注意力机制）的 SNN 模型。识

别准确率结果对比如图 13 所示。由图可知，本研究

所提方法对轮对轴承表面缺陷的检测准确率最高。

Alexnet没有采用残差结构，而且每层卷积中卷积核

大小不变，因此在特征提取能力及网络训练梯度消

失方面均弱于其他模型；ResNet 中每层卷积核大小

也是固定的，仅能提取特定尺度下的图像特征信息，

针对内容较为复杂的轴承损伤图像，特征信息提取

能力存在明显不足；YOLO⁃V5 网络模型虽然具有

很强的图像特征检测与提取能力，但需要大规模的

数据才能得到较好的网络模型训练结果，并不擅长

分析小样本图像；本研究方法通过 MrCFB 融合了

不同膨胀因子大小与不同卷积核尺寸的卷积操作，

可以有效提取复杂图像中的轮廓特征和细节特征信

息，并且结合双重注意力机制，进一步提升了模型挖

掘特征信息的质量及特征提取能力，因此面对复杂

的轮对轴承表面缺陷图像识别，本研究所提模型能

够取得较高的识别准确率。

5 结  论

1） 提出了特征提取增强的多分辨率 MrSNN 模

型构建方法，其基于 MrCFB 与双重注意力机制模

块，在小样本条件下具有较强的未知图像样本识别

能力。

2） 所构建的 MrCFB 融合了不同膨胀因子大小

与不同卷积核尺寸的卷积操作，能够综合提取图像

中的细节特征与轮廓特征信息，并且嵌入了由通道

注意力和空间注意力组成的双重注意力机制模块，

进一步增强了图像特征提取能力。

3） 通过对工业现场采集的列车轮对轴承小样

本图像进行故障检测分析，验证了所提方法的有效

性。结果表明，所提方法故障检测准确率优于传统

SNN、YOLO⁃V5 等网络模型。
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