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金属物对应答器上行链路电磁传输性能的影响
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摘要  针对应答器周围存在大量金属物影响其电磁传输性能的问题，在电磁场仿真软件中建立应答器天线模型，从

金属面面积、金属面到应答器垂直距离及金属面厚度 3 个方面进行仿真实验，得到不同参数下应答器上行链路信号

幅度曲线，计算应答器传输性能指标值并分析其传输性能所受的影响。研究表明：金属面面积越大，应答器传输模

块（balise transmission module， 简称 BTM）接收安全报文帧数等性能指标越小，且减小程度越明显，来自旁瓣区的

干扰越大，当金属面积大于 320 mm×320 mm 时，不能满足应答器上行链路场强一致性要求；金属面到应答器距离

绝对值越大，来自旁瓣区干扰越小，其值大于 123 mm 时才能满足场强一致性要求； 金属面厚度越大，来自旁瓣区干

扰越大，其厚度不应超过 1 mm。
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引  言

我国列控系统（Chinese train control system， 简
称 CTCS）在轨道电路基础上增加点式应答器，采用

点连式完成车地间通信，其中应答器向车载设备提

供线路速度、临时限速、线路基本参数、等级转换及

特 殊 定 位 等 信 息［1⁃2］。 我 国 铁 路 基 础 设 备 中 ，从

CTCS⁃1 级至 CTCS⁃4 级均用到应答器，但因其高

灵敏度也易受到外界干扰，给现场维护带来不便，对

铁路信号安全产生威胁。应答器周围存在大量金属

物，当电磁波遇到金属良导体时，27 MHz 与 4 MHz
左右的电磁波几乎不能穿透金属良导体进行传播，

故应答器在安装时其周围一定范围内要避免存在金

属物，或对金属物的面积、厚度等做出限定。

应答器传输系统（balise transmission system， 简
称 BTS） 结构复杂，学者们从不同角度研究了该系

统的传输性能。朱林富等［3］采用场分析法与等效电

路网络法分析了系统天线周围放置混凝土道床和钢

轨时系统天线的调谐频率、反射系数及磁场分布。

罗丽燕等［4］仿真分析护轮轨对应答器的干扰，通过

对护轨开槽尺寸进行优化，找出最合理开槽尺寸。

赵会兵等［5］通过仿真各类损耗介质下电磁波的穿透

特性，得到各类损耗介质和金属介质影响下应答器

天线的有效作用范围。文献［6⁃7］通过建立应答器

天线空间磁场分布模型研究了应答器安装高度、角

度偏差等对其电磁传输性能的影响。Geng 等［8］建

立了应答器传输系统数字孪生模型，分析了 BTM
天线与地面应答器间下行能量传输和上行数据发送

过程。李正交等［9］基于马尔可夫模型提出 BTS 的

可靠性评估方法，研究了列车速度对 BTS 的可靠性

影响。许波等［10］分析了应答器传输系统工作过程及

原理，研究应答器输入输出随空间时间的变化关系。

许庆阳等［11］结合应答器系统动态检测数据，采用数

学方法分析了轨道板类型及速度等因素对应答器性

能指标的影响。李雪等［12］通过分析应答器 A 接口的

传输过程，建立仿真模型对应答器产生的角度偏差

做出一致性评估。Lü 等［13］提出基于认知控制的应

答器系统上行链路信号处理方法，解决应答器信号

噪声干扰问题。文献［14⁃16］基于天线间电磁耦合

原理，分析了 BTS 的数据传输过程及旁瓣区感应电

压的幅值包络问题。陈小梅［17］研究了列车速度达到

400 km/h 及以上时应答器传输系统的适应性。

针对应答器周围金属物对其系统传输性能的影

响，笔者研究了应答器传输系统的工作原理，在电磁
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场仿真软件中建立应答器天线模型，仿真不同金属

面面积、金属面到应答器垂直距离及不同金属面厚

度下应答器上行链路信号幅度曲线，分析了电磁穿

透特性与传输性能。

1 应答器系统作用原理

应答器主要由壳体、灌封材料及电路板组成。电

路板安装于壳体内，包含用于发送上行信号与接收射

频能量的电磁感应耦合线圈，在特定地点实现车地间

高速点式信息传输。应答器电路板原理图如图 1所示，

整个电路的核心是应答器控制模块。应答器被激活

后，其首先判断 C 接口传来的数据是否有效，若有效

则将该接口传来的数据连续发送；若无效或没有数

据，将储存在应答器中的固定报文发送。不论是有

效数据还是默认信息，对其进行频移键控（frequency 
shift keying， 简称 FSK）调制，将调制后的信息传给

数据收发模块，进行功率放大，然后通过耦合线圈执

行发送过程。本研究以无源应答器为例进行仿真。

高速铁路车地信息传输过程包括下行激励和上

行发送。列车运行经过应答器上方时，BTM 发射天

线向地面连续发送 27.095 MHz±5 kHz 的高频电磁

能量，通过电磁耦合激活地面应答器，将存储在地

面应答器中的线路数据、临时限速等报文信息发给

BTM 接 收 天 线 ，频 率 为 4.234 MHz±175 kHz 
（频偏为 282.24 kHz，上下边频分别为 4.516 MHz 和
3.951 MHz），传输速率为 564.48 kbit/s，通过 BTM
解码后将信息传给车载计算机，该传输过程持续进

行直至能量消失。BTS 传输过程如图 2 所示。

2 应答器天线建模与验证

2.1　模型建立　

参考环线是围绕有效参考区域的环状导体，用

来 模 拟 测 试 应 答 器 特 性 ，大 尺 寸 参 考 环 为

358 mm× 488 mm。笔者选取标准参考环进行建模

仿真应答器电磁特性，其尺寸为 390 mm×200 mm，

由 4 节横截面为 20 mm×5 mm 的实心铜条、印制电

路板（printed circuit board，简称 PCB）、绝缘连接板

和螺纹连接器（thread neill⁃concelman connector，简
称 TNC）组成。4 段铜条通过绝缘板与 PCB 板连接

形成一个矩形环，TNC 主要向参考环供电。标准尺

寸参考环结构如图 3 所示。

PCB 板上安装电容 C1、C2 和电感 L2 ，并与电感

L1 相连。PCB 板电路元件如图 4 所示。其中：L1 为

1 节铜条的电感值，其大小等于标准尺寸参考环电

感的 1/4；L2为空心线圈，其感抗值与 L1相当；C1、C2

的温度系数接近 0。
当列车经过应答器上方时，BTM 发射天线向地

图 4　PCB 板电路元件

Fig.4　PCB board circuit components

图 1　应答器电路板原理图

Fig.1　Schematic diagram of balise circuit board

图 2　BTS 传输过程（单位：mm）

Fig.2　BTS transmission process (unit:mm)

图 3　标准尺寸参考环结构（单位：mm）

Fig.3　Standard size reference loop overall configuration 
(unit:mm)
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面连续发送 27.095 MHz 的高频电磁能量，激活应答

器后，应答器发送中心频率为 4.234 MHz 的 FSK 信

号用于传输报文。BTM 接收到的上行链路信号电

压不仅与流经应答器发射天线的电流强度呈正比关

系，而且用于模拟应答器天线的参考环必须调谐到

27.095 MHz 和 4.234 MHz 处，即必须得到合适的

L2、C1和 C2。L2与 L1近似相等。C1和 C2的选取原则

如 下 ：在 4.234 MHz 时 C2 的 阻 抗 可 以 忽 略 ；在

27.095 MHz时 C1的阻抗可以忽略。

fc=4.234 MHz时，谐振频率公式为

ω 1 = 2πfc = 1/ ( )L 1 + L 2 C 1 （1）
fc=27.095 MHz时，谐振频率公式为

ω 2 = 2πfc = ( L 1 + L 2 ) /L 1L 2C 2 （2）
首先，将 PCB 板短路确定电感 L1 的值，再确定

L2 的值，并根据式（1）、式（2）计算 C1 和 C2 的值。在

FEKO 软件中通过计算 27.095 MHz 时参考环的电

抗来调整 C2，通过计算 4.234 MHz 时参考环的电抗

来调整 C1。经过反复调整后确定 L2=30 nH，C1=
7.036 nF，C2=1.299 3 nF。为减少 FEKO 软件对应

答器参考环模型的计算量，在参考环每个 Port 端口

加入图 4 所示电路代替 PCB 板。应答器参考环模型

如图 5 所示。

2.2　模型仿真结果与验证　

铁道行业标准［18］规定，上行链路应答器的磁场

强度垂直分量应与参考磁场一致，应答器输出信号

强度与参考磁场差值构成上行链路的一致性偏差，

其单位为 dB。上行链路参考磁场与限定见图 6。其

中：A=5 dB；B=5 dB；C=35 dB；D=60 dB；XT=
5 cm；R0为 z0=220 mm 时作用区的最大磁场强度。

为防止相邻应答器和邻线应答器对其产生干

扰，应答器天线波瓣图需满足场强一致性要求。作

用区定义为应答器正上方 220~460 mm 之间 16角柱

状有限体积区域，应答器产生的磁场与参考磁场场

强差值在±1.5 dB 内，旁瓣区定义为-1 300 mm<
x<+1 300 mm，-1 400 mm<y<+1 400 mm，

+220 mm<z<+460 mm（包含作用区）， 场强差值

在 5~-∞ dB 之间，其参考磁场相比 z0=220 mm 时

作用区磁场限制为 C，不小于 35 dB。串扰区不允许

产生能量和信息传输，场强差值限制在 5~-∞ dB
之间，其参考磁场相比 z0=220 mm 时作用区磁场限

制为D，不小于 60 dB。在调谐后的应答器参考环模

型中加入频率为 1 MHz~60 MHz、电压为 1 V 的电

源 ，通 过 矩 量 法 计 算 参 考 环 线 阻 抗 ，仿 真

3.951 MHz、4.234 MHz 及 4.516 MHz 时应答器上行

信号幅度曲线。参考环模型仿真结果如图 7 所示。

由图 7 可知，应答器发送 4.234 MHz 时的信号

最强，旁瓣区峰值与作用区峰值相差大于 30 dB，串

扰区峰值与作用区峰值相差大于 60 dB，符合应答

器上行链路场强一致性要求。应答器参考环模型阻

抗模值几乎为 0，说明模型可以很好地调谐到上行

信号传输频率与下行射频能量发送频率。在实验室

设定参考环测试条件，通过环线电阻特性验证模

型。信号发生器用来给参考环加上不同频率，使用

图 7　参考环模型仿真结果

Fig.7　Reference loop model simulation diagram

图 5　应答器参考环模型

Fig.5　Balise reference loop model

图 6　上行链路参考磁场与限定

Fig.6　Reference field and limits of up⁃link
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功率计测量参考环输入端口电压。在功放输出功率

不变的情况下，该端口电压越小表示参考环阻抗越

小，该端口电压越大表示参考环阻抗越大。测试连

接与测试结果如图 8 所示。由图可以看出，当所加

信号为 4 MHz 和 27 MHz 左右信号时，电路呈调谐

状态，输入电压最小。经分析，参考环模型仿真数据

与实测数据相符，验证了模型的正确性与适用性。

3 仿真分析

3.1　应答器周围无金属空间分析　

当电磁波遇到金属良导体时仅集中在良导体的

表面，27 MHz 与 4 MHz 左右的电磁波几乎不能穿

透金属良导体进行传播。为避免金属导体对电磁波

的衰耗，应答器在安装时其周围一定范围内应避免

存在金属物。根据铁道行业标准规定，应答器无金

属空间与安装位置见图 9。其中，z轴正向无金属空

间高于应答器的轨面，若应答器横向安装，将图 9 中

的应答器 z轴旋转 90°，y方向的无金属距离变为

410 mm，x方向无金属距离变为 315 mm，在无金属

空间范围内不能存在电气闭合回路。设金属物面至

应答器中心点距离为 dobject，金属物长度为 lobject。

应答器极端靠近金属面安装时，应根据金属量

来调整安装高度，金属面位于轨面以下，距离 D在

186 ~233 mm 之间，标准尺寸应答器与轨面距离 zb
在-93~-150 mm 之间。极端靠近金属面安装时

zb 取决于 D，当 -233 ≤ D≤ -193 时，zb 在 -93~
-103 mm 之间；当-193 ≤ D≤ -186 时，zb需满足

d+ 90 ≤ zb ≤ d+ 100。此时，金属物面至应答器

中心点距离 dobject 明显不能满足无金属空间纵向

210 mm 的要求。笔者研究极端靠近金属面时的情

形，分析金属面面积 S、金属面到应答器距离 dobject及

金属面本身厚度 d对系统传输性能的影响。由于钢

轨为金属体，建模时加入钢轨模型，在 z0=220 mm
平面有钢轨时应答器上行信号磁场分布见图 10。

选取 zb=-103 mm，钢轨类型为 50 kg/m，金属

面仿真测试模型如图 11 所示。

3.2　周围金属面对应答器传输性能影响分析　

3.2.1　金属面面积　

设金属面与轨面最大距离 D=-186 mm，zb=
-103 mm，金属面厚度 d=5 mm，选取金属面面积

S=80 mm×80 mm、160 mm×160 mm、240 mm×
240 mm 和 320 mm×320 mm，仿真不同金属面积下

上行信号幅度曲线，如图 12 所示。

图 8　测试连接与测试结果

Fig.8　Test connection and test result

图 9　应答器无金属空间与安装位置（单位：mm）

Fig.9　No metal space and installation position for balise 
(unit:mm)

图 10　有钢轨时应答器上行信号磁场分布

Fig.10　Magnetic field distribution of balise uplink signal with 
rails

图 11　金属面仿真测试模型

Fig.11　Model for metal surface simulation testing
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设列车速度为 300 km/h，计算不同金属面积 S

下应答器性能指标数据值，如表 1 所示。

由图 12 与表 1 可知，金属面面积 S越大，应答器

作用距离、BTM 接收安全报文帧数等性能指标越

小，且减小程度越明显，来自旁瓣区干扰越大。当

S≤240 mm×240 mm，波瓣图旁瓣区峰值与作用区

峰值相差大于 30 dB；当 S≥320 mm×320 mm，其差

值小于 30 dB，不满足上行链路场强一致性要求。

当 S从 0 增加到 240 mm×240 mm，BTM 接收安全

报文帧数减小 0.023 1 帧；当 S从 240 mm×240 mm
增加到 400 mm×400 mm，BTM 接收安全报文帧数

减小 0.167 8 帧。

3.2.2　金属面与应答器垂直距离　

设 zb=-103 mm，金属面厚度 d=5 mm，金属

面积 S=320 mm×320 mm，选取 dobject为-83、-93、
-103、-113 和-123 mm，仿真不同 dobject 下的上行

链路信号幅度曲线，如图 13 所示。

设列车速度为 300 km/h，计算不同 dobject下应答

器性能指标数据值，如表 2 所示。

由 图 13 与 表 2 可 知 ，当 -233 mm≤D≤
-186 mm 时，金属面到应答器距离 dobject的变化对应

答器传输性能指标几乎无影响，dobject绝对值从 83 mm
增加到 123 mm，应答器作用距离变化在 1 mm 之内，

BTM 接收安全报文帧数变化在 0.005 帧之内。由

图 13（b）可知，dobject绝对值越大，来自旁瓣区干扰越

小，当 dobject 绝对值为 83、93 和 103 mm 时，旁瓣区峰

值与作用区峰值相差小于 30 dB，不满足上行链路

场强一致性要求。当 dobject 绝对值为 123 mm 时，其

差值大于 30 dB。

3.2.3　金属面厚度　

设金属面与轨面最大距离 D=-186 mm，zb=
-103 mm，金属面积 S=320 mm×320 mm，选取金

属面厚度 d为 1、3、5、7 和 9 mm，仿真不同金属面厚

度下的上行信号幅度曲线，如图 14 所示。

设列车速度为 300 km/h，计算不同金属面厚度

d下应答器性能指标数据值，如表 3 所示。

由 图 14 与 表 3 可 知 ，当 -233 mm≤D≤

图 13　不同 dobject下的上行链路信号幅度曲线

Fig.13　Upward signal amplitude curve under different dobject

图 12　不同金属面积下上行信号幅度曲线

Fig.12　Upward signal amplitude curve under different metal 
areas

表 1　不同金属面积 S下应答器性能指标数据值

Tab.1　Performance index data values of balise under 
different metal areas S

S/mm2

0
80×80
160×160
240×240
320×320
400×400

应答器作

用距离/
mm

702.16
702.15
701.59
698.41
688.52
671.16

BTM 动态

作用时间/
ms

8.425 9
8.425 8
8.419 1
8.380 9
8.262 2
8.053 9

BTM 动态

接收比特

数/bit
4 756.3
4 756.2
4 752.4
4 730.9
4 663.9
4 546.3

BTM 动态

接收安全

报文帧数

4.323 9
4.323 8
4.320 4
4.300 8
4.239 9
4.133 0

表 2　不同 dobject下应答器性能指标数据值

Tab.2　Performance index data values of balise under 
different dobject

dobject/mm

-83
-93

-103
-113
-123

应答器作

用距离/
mm

688.52
688.36
688.32
688.63
689.34

BTM 动态

作用时间/
ms

8.262 2
8.260 3
8.259 8
8.263 6
8.272 1

BTM 动态

接收比特

数/bit
4 663.9
4 662.8
4 662.5
4 664.6
4 669.4

BTM 动态

接收安全

报文帧数

4.239 9
4.238 9
4.238 6
4.240 6
4.244 9
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-186 mm 时，金属面厚度 d的变化对应答器传输性

能指标几乎无影响。d从 1 mm 增加到 5 mm，应答

器作用距离变化在 2 mm 之内，BTM 接收安全报文

帧数变化在 0.006 帧之内。由图 14（b）可知，d越大，

来自旁瓣区干扰越大，只有 d=1 mm 时，旁瓣区峰

值与作用区峰值相差大于 30 dB。

综上所述，得到极端靠近金属面安全区与非安

全区划分，如图 15 所示。

通过仿真实验可知，当应答器周围存在金属面

且为极端靠近金属面安装时，在图 15 所示安全区电

磁波几乎无衰耗，应答器信息传输稳定可靠；越过临

界值进入非安全区时，应答器周围金属面将影响应

答器信息传输，带来旁瓣干扰。

4 结  论

1） 金属面积越大，应答器作用距离、BTM 接收

安全报文帧数等性能指标越小，且减小程度越明显，

来自旁瓣区干扰越大。当金属面积 S≥320 mm×
320 mm 时，旁瓣区峰值与作用区峰值相差小于

30 dB，不能满足上行链路场强一致性要求。

2） 金属面到应答器距离绝对值越大，来自旁瓣

区干扰越小，其值大于 123 mm 时才能满足场强一

致性要求。

3） 金属面厚度越大，来自旁瓣区干扰越大，实

际应用中其厚度不能超过 1 mm，以确保旁瓣区峰值

与作用区峰值相差大于 30 dB。
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